Citation: J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues. Ulam-Hyers stabilities of fractional functional differential equations[J]. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092
[1] | S. Abbas, W. A. Albarakati, M. Benchohra, et al. Existence and Ulam stabilities for Hadamard fractional integral equations with random effects, Electron. J. Differ. Eq., 2016 (2016), 1-12. doi: 10.1186/s13662-015-0739-5 |
[2] | S. Abbas, M. Benchohra, A. Petrusel, Ulam stability for partial fractional differential inclusions via Picard operators theory, Electron. J. Qual. Theo., 51 (2014), 1-13. |
[3] | S. Abbas, M. Benchohra, J. E. Lazreg, et al. Hilfer and Hadamard functional random fractional differential inclusions, Cubo (Temuco), 19 (2017), 17-38. doi: 10.4067/S0719-06462017000100002 |
[4] | S. Abbas, M. Benchohra, M. A Darwish, Some new existence results and stability concepts for fractional partial random differential equations, J. Math. Appl., 39 (2016), 5-22. |
[5] | R. P. Agarwal, Y. Zhou, J. Wang, et al. Fractional functional differential equations with causal operators in Banach spaces, Math. Comput. Model., 54 (2011), 1440-1452. doi: 10.1016/j.mcm.2011.04.016 |
[6] | R. Agarwal, S. Hristova, D. O'Regan, Mittag-Leffler stability for non-instantaneous impulsive Caputo fractional differential equations with delays, Math. Slovaca, 69 (2019), 583-598. doi: 10.1515/ms-2017-0249 |
[7] | M. Benchohra, J. Henderson, S. K. Ntouyas, et al. Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021 |
[8] | M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Studia Universitatis Babes-Bolyai, Mathematica, 62 (2017), 27-38. doi: 10.24193/subbmath.2017.0003 |
[9] | Y. K. Chang, M. M. Arjunan, G. M. N'Guérékata, et al. On global solutions to fractional functional differential equations with infinite delay in Fréchet spaces, Comput. Math. Appl., 62 (2011), 1228-1237. doi: 10.1016/j.camwa.2011.03.039 |
[10] | J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309. |
[11] | X. L. Ding, J. J. Nieto, Analysis and numerical solutions for fractional stochastic svolution squations with almost sectorial operators, J. Comput. Nonlinear Dynam., 14 (2019), 091001. |
[12] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222 |
[13] | R. W. Ibrahim, H. A. Jalab, Existence of Ulam stability for iterative fractional differential equations based on fractional entropy, Entropy, 17 (2015), 3172-3181. doi: 10.3390/e17053172 |
[14] | Y. L. Jiang, X. L. Ding, Nonnegative solutions of fractional functional differential equations, Comput. Math. Appl., 63 (2012), 896-904. doi: 10.1016/j.camwa.2011.11.055 |
[15] | S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135-1140. doi: 10.1016/j.aml.2003.11.004 |
[16] | S. M. Jung, Hyers-Ulam stability of linear differential equation of the first order (III), J. Math. Anal. Appl., 311 (2005), 139-146. doi: 10.1016/j.jmaa.2005.02.025 |
[17] | S. M. Jung, Hyers-Ulam stability of linear differential equation of the first order (II), J. Math. Anal. Appl., 19 (2006), 854-858. |
[18] | S. M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl., 320 (2006), 549-561. doi: 10.1016/j.jmaa.2005.07.032 |
[19] | S. M. Jung, A fixed point approach to the stability of differential equations y' = f (x, y), Bull. Malays. Math. Sci. Soc., 33 (2010), 47-56. |
[20] | R. Ganesh, R. Sakthivel, N. Mahmudov, Approximate controllability of fractional functional equations with infinite delay, Topol. Method. Nonl. An., 43 (2014), 345-364. |
[21] | R. Ganesh, R. Sakthivel, Y. Ren, et al. Controllability of neutral fractional functional equations with impulses and infinite delay, Abstr. Appl. Anal., Hindawi, 2013. |
[22] | T. L. Guo, W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl., 64 (2012), 3414-3424. doi: 10.1016/j.camwa.2011.12.054 |
[23] | H. Gou, B. J. Li, Existence results for Hilfer fractional evolution equations with boundary conditions, Bound. Value Probl., 2018 (2018), 48. |
[24] | H. Gou, B. Li, Study a class of nonlinear fractional non-autonomous evolution equations with delay, J. Pseudo-Differ. Oper. Appl., 10(2019), 155-176. doi: 10.1007/s11868-017-0234-8 |
[25] | V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear AnalTheor, 69 (2008), 3337-3343. doi: 10.1016/j.na.2007.09.025 |
[26] | X. Li, S. Liu, W. Jiang, Positive solutions for boundary value problem of nonlinear fractional functional differential equations, Appl. Math. Comput., 217 (2011), 9278-9285. |
[27] | K. Liu, J. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations, Adv. Differ. Equ-NY, 2019 (2019), 50. |
[28] | J. Lv, X. Yang, Approximate controllability of Hilfer fractional differential equations, Math. Meth. Sci. Appl., 43 (2020), 242-254. doi: 10.1002/mma.5862 |
[29] | J. Mu, S. Huang, L. Guo, Existence and regularity of q-mild solutions to fractional evolution equations with noncompact semigroups, Differ. Equ. Dyn. Syst., 26 (2018), 3-14. doi: 10.1007/s12591-016-0337-3 |
[30] | M. Nadeem, J. Dabas, Controllability result of impulsive stochastic fractional functional differential equation with infinite delay, Int. J. Adv. Appl. Math. Mech., 2 (2014), 9-18. |
[31] | T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23-130. doi: 10.1023/A:1006499223572 |
[32] | I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babes-Bolyai Math., 54 (2009), 125-133. |
[33] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat., 60 (2018), 72-91. doi: 10.1016/j.cnsns.2018.01.005 |
[34] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, Leibniz type rule: ψ-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simulat., 77 (2019), 305-311. doi: 10.1016/j.cnsns.2019.05.003 |
[35] | J. Vanterler da C. Sousa, K. D. Kucche, E. Capelas de Oliveira, On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator, Math. Meth. Appl. Sci., 42 (2019), 3021-3032. doi: 10.1002/mma.5562 |
[36] | J. Vanterler da C. Sousa, F. R. Rodrigues, E. Capelas de Oliveira, Stability of the fractional Volterra integro-differential equation by means of ψ-Hilfer operator, Math. Meth. Appl. Sci., 42 (2019), 3033-3043. doi: 10.1002/mma.5563 |
[37] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. |
[38] | J. Vanterler da C. Sousa, K. D. Kucche, E. Capelas de Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73-80. doi: 10.1016/j.aml.2018.08.013 |
[39] | I. Stamova, G. Stamov, Stability analysis of impulsive functional systems of fractional order, Commun. Nonlinear Sci., 19 (2014), 702-709. doi: 10.1016/j.cnsns.2013.07.005 |
[40] | G. T. Stamov, I. M. Stamova, Impulsive fractional functional differential systems and Lyapunov method for the existence of almost periodic solutions, Rep. Math. Phys., 75 (2015), 73-84. doi: 10.1016/S0034-4877(15)60025-8 |
[41] | S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation y' = λy, Bull. Korean Math. Soc., 39 (2002), 309-315. doi: 10.4134/BKMS.2002.39.2.309 |
[42] | C. Tunç, E. Biçer, On the Hyers-Ulam stability of non-homogeneous Euler equations of third and fourth order, Sci. Res. Essays, 8 (2013), 220-226. |
[43] | C. Tunç, E. Biçer, Hyers-Ulam-Rassias stability for a first order functional differential equation, Journal of Mathematical and Fundamental Sciences, 47 (2015), 143-153. doi: 10.5614/j.math.fund.sci.2015.47.2.3 |
[44] | S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley & Sons, Inc., New York, 1964. |
[45] | J. Wang, M. Feckan, Y. Zhou, Weakly Picard operators method for modifed fractional iterative functional differential equations, Fixed Point Theory, 15 (2014), 297-310. |
[46] | J. Wang, Y. Zhou, Mittag-Leffler-Ulam stabilities of fractional evolution equations, Appl. Math. Lett., 25 (2012), 723-728. doi: 10.1016/j.aml.2011.10.009 |
[47] | Y. Wang, F. Gao, P. Kloeden, Impulsive fractional functional differential equations with a weakly continuous nonlinearity, Electron. J. Differ. Equ., 285 (2017), 1-18. |
[48] | J. Wang, A. G. Ibrahim, M. Fečkan, et al. Controllability of fractional non-instantaneous impulsive differential inclusions without compactness, IMA J. Math. Control I., 36 (2017), 443-460. |
[49] | Y. Zhao, H. Chen, L. Huang, Existence of positive solutions for nonlinear fractional functional differential equation, Comput. Math. Appl., 64 (2012), 3456-3467. doi: 10.1016/j.camwa.2012.01.081 |
[50] | Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators, Fract. Calc. Appl. Anal., 21 (2018), 786-800. doi: 10.1515/fca-2018-0041 |
[51] | Y. Zhou, J. W. He, B Ahmad, et al. Existence and attractivity for fractional evolution equations, Discrete Dyn. Nat. Soc., 2018 (2018), 1070713. |