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Abstract: From the first results on Ulam-Hyers stability, what has been noted is the exponential
growth of the researchers dedicated to investigating Ulam-Hyers stability of fractional differential
equation solutions whether they are functional, evolution, impulsive, among others. However, some
issues and problems still need to be addressed. An intensifying problem is the small amount of work on
Ulam-Hyers stability of solutions of fractional functional differential equations through more general
fractional operators. In this sense, in this paper, we present a study on the Ulam-Hyers and Ulam-
Hyers-Rassias stabilities of the solution of the fractional functional differential equation using the
Banach fixed point theorem.
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1. Introduction

From an exchange of questions and answers between Ulam and Hyers, the research on the stability
of solutions of functional differential equations was started several years ago [12, 44]. More precisely,
Ulam raised the following question: Let H1 and H2 be a group and a metric group endowed with
the metric d(·, ·), respectively. Given ε > 0, does there exists a δ > 0 such that if the function f :
H1 → H2 satisfies the following inequality d( f (x, y), f (x) f (y)) < δ, ∀x, y ∈ H1, then there exists a
homeomorphism F : H1 → H2 with d( f (x), F(x)) < ε, ∀x ∈ H1? And so Hyers, presents his answer, in
the case where H1 and H2 are Banach spaces [44]. Since then, a significant number of researchers have
devoted themselves to developing their research which address stability and many important works
have been published not only on functional differential equations, but also other types of equations
[15, 16, 17, 18, 32].

On the other hand, with the expansion of the fractional calculus and the number of researchers
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investigating more and more problems involving the stability of solutions of fractional functional
differential equations, specially in Banach spaces, this field started to gain more attention [2, 3, 4, 39].
In addition, not only stability has been the subject of study, but investigating the existence and
uniqueness, as well as the controllability of solutions of fractional differential equations, has called,
and still call, a lot of attention over the years [5, 11, 14, 20, 21, 22, 23, 26, 30].

In 2012 Zhao et al. [49], investigated the existence of positive solutions of the fractional functional
differential equation introduced by means of the Caputo fractional derivative and using the
Krasnoselskii fixed point theorem. In this paper, the results obtained on the existence of positive
solutions for the fractional functional differential equation improves and generalize the existing
results. There are numerous works on the existence and uniqueness of fractional functional
differential equations, both locally and globally in the Hilbert, Banach and Fréchet spaces. For better
reading we suggest the works [7, 9, 25, 47].

In the middle of 2017, Abbas et al. [4], investigated the existence of Ulam-Hyers and Ulam-Hyers-
Rassias stabilities of the random solution of the fractional functional differential equation of the Hilfer
and Hilfer-Hadamard type by means of fixed point theorems. Abbas et al. [2], also investigated
the Ulam stability of functional partial differential equations through Picard’s operator theory and
provided some examples. Further work on stability of fractional functional differential equations and
even functional integral equation can be found in the following works [1, 8, 13, 45]. The stability study
is broad and there are other types of stability in which we will not discuss in this paper, but in the
paper of Stamova and Stamov [40], they perform a system stability analysis of fractional functional
differential equations using the Lyapunov method and the principle of comparison.

In addition, it is worth mentioning the work done in 2019 by Liu et al., on
Ulam–Hyers–Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations using
Picard’s method and Gronwall inequality [27]. On the other hand, the theory of fractional differential
equations with almost sectorial operators has been investigated over the years and results on the
existence, uniqueness, stability and attractivity of mild solutions are the subject of study by many
researchers [6, 50, 51]. This shows that research in the field of fractional differential equations over
the years has been construed and some important and were interesting results are obtained
[24, 29, 35, 36]. Another significant result in this field of study, is the investigation of approximate
controllability of mild solutions in Banach space using the Banach principle technique [28, 48].

Since the theory about the Ulam-Hyers stability of functional differential equations is in wide
growth, and the number of papers on this matter is, in our opinion, still small, one of the objectives for
the realization of this paper is to provide an investigation of the fractional differential equation
Eq. (1.1), in order to be a good research material in this matter.

Consider the delay fractional differential equation of the form

HDυ,ζ;ψ
t0+ y (t) = F (t, y (t) , y (t − a)) (1.1)

where HDυ,ζ;ψ
t0+ (·) is the ψ-Hilfer fractional derivative with 0 < υ ≤ 1, 0 ≤ ζ ≤ 1, F : R3 → R is a

bounded and continuous function, a > 0 is a real constant and t > a.
Motivated by the works [31, 41, 42], in this paper, we have as main purpose to investigate the Ulam-

Hyers and Ulam-Hyers-Rassias stabilities of the fractional functional differential equation Eq. (1.1) by
means of Banach fixed point theorem.
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This paper is organized as follows: in Section 2, we present as preliminaries the continuous
functions and the weighted function space, in order to introduce the ψ- Riemann-Liouville fractional
integral and the ψ-Hilfer fractional derivative. In this sense, we present the concepts of Ulam-Hyers
and Ulam-Hyers-Rassias stabilities, as well as Banach fixed point theorem, which is fundamental for
obtaining the main results. In Section 3, we present the first result of this paper, the
Ulam-Hyers-Rassias stability by means of Banach fixed point theorem. In Section 4, again by means
of Banach fixed point theorem, we present the second result of this paper, the Ulam-Hyers stability.
Concluding remarks close the paper.

2. Preliminaries

In this section we present some important concepts that will be useful to write our mains results.
First, we present the definitions of the ψ-Riemann-Liouville fractional integral and the ψ-Hilfer
fractional derivative. In this sense, we present the Ulam-Hyers, Ulam-Hyers-Rassias and generalized
Ulam-Hyers-Rassias stabilities concepts for the ψ-Hilfer fractional derivative. We conclude the
section with the Banach fixed point theorem, an important result to obtain the stability of the
fractional functional differential equation.

Let [a, b] (0 < a < b < ∞) be a finite interval on the half-axis R+ and C[a, b], ACn[a, b], Cn[a, b]
be the spaces of continuous functions, n-times absolutely continuous functions, n-times continuously
differentiable functions on [a, b], respectively.

The space of the continuous functions f on [a, b] with the usual norm is defined by [33]

‖ f ‖C[a,b] = max
t∈[a,b]

| f (t)| .

On the order hand, we have n-times absolutely continuous functions given by

ACn [a, b] =
{
f : [a, b]→ R; f (n−1)

∈ AC ([a, b])
}
.

The weighted space Cγ,ψ[a, b] of functions f on (a, b] is defined by [33]

Cγ;ψ [a, b] = { f : (a, b]→ R; (ψ (t) − ψ (a))γ f (t) ∈ C [a, b]} , 0 ≤ γ < 1

with the norm

‖ f ‖Cγ;ψ[a,b] = ‖(ψ (t) − ψ (a))γ f (t)‖C[a,b] = max
t∈[a,b]

|(ψ (t) − ψ (a))γ f (t)| .

The weighted space Cn
γ;ψ [a, b] of function f on (a, b] is defined by [33]

Cn
γ;ψ [a, b] =

{
f : (a, b]→ R; f (t) ∈ Cn−1 [a, b] ; f (n) (t) ∈ Cγ;ψ [a, b]

}
, 0 ≤ γ < 1

with the norm

‖ f ‖Cn
γ;ψ[a,b] =

n−1∑
k=0

∥∥∥ f (k)
∥∥∥

C[a,b]
+

∥∥∥ f (n)
∥∥∥

Cγ;ψ[a,b]
.

For n = 0, we have, C0
γ,ψ [a, b] = Cγ,ψ [a, b].
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The weighted space Cυ,ζ
γ,ψ[a, b] is defined by

Cυ,ζ
γ;ψ [a, b] =

{
f ∈ Cγ;ψ [a, b] ; HDυ,ζ;ψ

a+ f ∈ Cγ;ψ [a, b]
}
, γ = υ + ζ (1 − υ) .

Let υ > 0, [a, b] a interval (∞ ≤ a < b ≤ ∞) and ψ (t) be an increasing and positive monotone
function on (a, b], having a continuous derivative ψ′ (t) on [a, b]. The Riemann-Liouville fractional
integral with respect to another function ψ on [a, b] is defined by [33, 34]

Iυ;ψ
t0+ y (t) :=

1
Γ (υ)

∫ t

t0
Nυ
ψ(t, s)y (s) ds (2.1)

where Γ (·) is the gamma function with 0 < υ ≤ 1 and Nυ
ψ(t, s) := ψ′(s)(ψ(t) − ψ(s))υ−1. The ψ-

Riemann-Liouville fractional integral on the left is defined in an analogous way.
On the other hand, let n−1 < υ ≤ n with n ∈ N, J = [a, b] be an interval such that −∞ ≤ a < b ≤ +∞

and let f , ψ ∈ Cn ([a, b] ,R) be two functions such that ψ is increasing and ψ′ (t) , 0, for all t ∈ J. The
ψ-Hilfer fractional derivative is given by [33, 34]

HDυ,ζ;ψ
t0+ y (t) = Iζ(n−υ);ψ

t0+

(
1

ψ′ (t)
d
dt

)n

I(1−ζ)(n−υ);ψ
t0+ y (t) .

The ψ-Hilfer fractional derivative on the left is defined in an analogous way.
Let X be a nonempty set. A function d : X × X → [0,∞] is called generalized metric on X if, and

only if, d satisfies [43]:

1. d (x, y) = 0 if x = y;
2. d (x, y) = d (y, x), for all x, y ∈ X;
3. d (x, z) ≤ d (x, y) + d (y, z) , for all x, y, z ∈ X.

For the study of Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stabilities,
we will adapt such definitions [31, 41, 43].

Definition 1. Let ε ≥ 0, Φ ∈ C1−γ;ψ [t0 − a, t0] and t0,T ∈ R with T > t0. Assume that for any
continuous function f : [t0 − a,T ]→ R satisfying{ ∣∣∣HDυ,ζ;ψ

t0+ f (t)F (t, f (t) , f (t − a))
∣∣∣ < ε, t ∈ [t0,T ]

| f (t) − Φ (t)| < ε, t ∈ [t0 − a, t0] ,

exists a continuous function f0 : [t0 − a,T ]→ R satisfying:{
HDυ,ζ;ψ

t0+ f0 (t) = F (t, f0 (t) , f0 (t − a)) , t ∈ [t0,T ]
f0 (t) = Φ (t) , t ∈ [t0 − a, t0]

and
| f (t) − f0 (t)| ≤ K (ε) , t ∈ [t0 − a,T ]

where K (ε) in dependant of ε only. Then, we say that the solution of Eq. (1.1) is Ulam-Hyers stable.
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Definition 2. Let ε ≥ 0, Φ ∈ C1−γ;ψ [t0 − a, t0] and t0,T ∈ R with T > t0. Assume that for any
continuous function f : [t0 − a,T ]→ R satisfying{ ∣∣∣HDυ,ζ;ψ

t0+ f (t) − F (t, f (t) , f (t − a))
∣∣∣ < ϕ, t ∈ [t0,T ]

| f (t) − Φ (t)| < ϕ, t ∈ [t0 − a, t0] ;

exists a continuous function f0 : [t0 − a,T ]→ R satisfying{
HDυ,ζ;ψ

t0+ f0 (t) = F (t, f0 (t) , f0 (t − a)) , t ∈ [t0,T ]
f0 (t) = Φ (t) , t ∈ [t0 − a, t0]

and
| f (t) − f0 (t)| ≤ Φ1, t ∈ [t0 − a,T ]

where Φ1 is a function not depending on f and f0 explicitly. Then, we say that the solution of Eq. (1.1)
is the Ulam-Hyers-Rassias stable.

Definition 3. Eq.(1.1) is said to be generalized Ulam-Hyers-Rassias stable with respect to φ if there
exists cφ > 0 such that for each solution y ∈ C1

1−γ;ψ ([t0 − a,T ] ,R) to∣∣∣HDυ,ζ;ψ
t0+ y (t) − F (t, y (t) , y (t − a))

∣∣∣ ≤ φ (t) , t ∈ [t0 − a,T ]

there exists a solution x ∈ C1
1−γ;ψ ([t0 − a,T ] ,R) of Eq.(1.1) with

|y (t) − x (t)| ≤ cφφ (t) , t ∈ [t0 − a,T ] .

The following is the result of the Banach fixed point theorem, however its proof will be omitted.

Theorem 1. [10] Let (X, d) be a generalized complete metric space. Assume that Ω : X → X is a
strictly contractive operator with the Lipschitz constant L < 1. If there exists a nonnegative integer k
such that d

(
Ωk+1x,Ωkx

)
< ∞ for some x ∈ X, then the following are true:

1. The sequence {Ωnx} converges to a fixed x∗ of Ω;
2. x∗ is the unique fixed point of Ω in

X∗ =
{
y ∈ X : d

(
Ωkx, y

)
< ∞

}
.

3. If y ∈ X∗, then

d (y, X∗) ≤
1

1 − L
d (Ωy, y) .

3. Ulam-Hyers-Rassias stability

By means of the Banach fixed point theorem, in this section we present the first result of this paper,
the Ulam-Hyers-Rassias stability for the delay fractional differential equation, Eq. (1.1).

Theorem 2. Consider the interval I = [t0 − a,T ] and suppose that F : I ×R ×R→ R is a continuous
function with the following Lipschitz condition:

|F (t, x, y) − F (t, z,w)| ≤ L1 |x − z| +L2 |y − w|

AIMS Mathematics Volume 5, Issue 2, 1346–1358.



1351

for all (t, x, y) , (t, z,w) ∈ I × R × R.
Let φ : I → (0,∞) be a continuous function. Assume that Φ ∈ C1−γ;ψ [t0 − a, t0], K ,L1 and L2 are

positive constants with
0 < K (L1 +L2) < 1

and ∣∣∣∣∣∣ 1
Γ (υ)

∫ t

t0
Nυ
ψ(t, u)φ (u) du

∣∣∣∣∣∣ ≤ Kφ (t) ,

for all t ∈ I = [t0 − a,T ].
Then, if a continuous function y : I → R and ϕ : I → (0,∞) satisfies{ ∣∣∣HDυ,ζ;ψ

t0+ y (t) − F (t, y (t) , y (t − a))
∣∣∣ < ϕ (t) , t ∈ [t0,T ]

|y (t) − Φ (t)| < ϕ (t) , t ∈ [t0 − a, t0]

then there exists a unique continuous function y0 : I → R such that{
HDυ,ζ;ψ

t0+ y0 (t) = F (t, y0 (t) , y0 (t − a)) , t ∈ [t0, T ]
y0 (t) = Φ (t) , t ∈ [t0 − a, t0]

(3.1)

and
|y (t) − y0 (t)| ≤

1
1 − K (L1 +L2)

Kφ (t) , for all t ∈ I. (3.2)

Proof. For the proof of this theorem, first consider the set S given by

S =
{
ϕ : I → R : ϕ ∈ C1−γ;ψ, ϕ (t) = Φ (t) , if t ∈ [t0 − a, t0]

}
and the following generalized metric over S

d (ϕ, µ) = inf {M ∈ [0,∞) : |ϕ (t) − µ (t)| ≤ Mφ (t) , ∀t ∈ I} . (3.3)

Note that, (S , d) is a generalized complete metric space. Now, we introduce the following function
Ω : S → S given by

(Ωϕ) (t) = Φ (t) , t ∈ [t0 − a, t0]

(Ωϕ) (t) = Φ (t0) Ψγ(t, t0) +
1

Γ (υ)

∫ t

t0
Nυ
ψ(t, s)F (u, ϕ (u) , ϕ (u − a)) du, t ∈ [t0,T ] ,

(3.4)

where Ψγ(t, t0) :=
(ψ(t) − ψ(t0))1−γ

Γ(γ)
, with γ = υ + ζ(1 − υ). Note that, for ϕ ∈ S , the function Ωϕ is

continuous. In this way, we can write Ωϕ ∈ S . Let ϕ, µ ∈ S and by Eq.(3.4), we have

|(Ωϕ) (t) − (Ωµ) (t)|

≤

∣∣∣∣∣∣ 1
Γ (υ)

∫ t

t0
Nυ
ψ(t, u) (F (u, ϕ (u) , ϕ (u − a)) − F (u, µ (u) , µ (u − a))) du

∣∣∣∣∣∣
≤

1
Γ (υ)

∫ t

t0
Nυ
ψ(t, u) (L1 |ϕ (u) − µ (u)| − L2 |ϕ (u − a) − µ (u − a)|) du
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≤
ML1

Γ (υ)

∫ t

t0
Nυ
ψ(t, u)φ (u) du +

ML2

Γ (υ)

∫ t

t0
Nυ
ψ(t, u)φ (u) du

≤
M (L1 +L2)

Γ (υ)

∣∣∣∣∣∣
∫ t

t0
Nυ
ψ(t, u)φ (u) du

∣∣∣∣∣∣
≤ MK (L1 +L2) φ (t) , t ∈ [t0,T ]

and
|(Ωϕ) (t) − (Ωµ) (t)| = Φ (t) − Φ (t) = 0, t ∈ [t0 − a, t]

which implies that d (Ωϕ −Ωµ) ≤ K (L1 +L2) d (ϕ, µ) . Since 0 < K (L1 +L2) < 1, then Ω is strictly
contractive on S .

Let ξ ∈ S arbitrary and min
t∈I

φ (t) > 0. As F (t, ξ (t) , ξ (t − a)) and ξ (t) are bounded on I, then there
exists a constant 0 < M < ∞ such that

|(Ωξ) (t) − ξ (t)| =

∣∣∣∣∣∣Ψγ(t, t0)Φ (t0) +
1

Γ (υ)

∫ t

t0
Nυ
ψ(t, u)F (u, ξ (u) , ξ (u − a)) du − ξ (t)

∣∣∣∣∣∣
≤ Mϕ (t) . (3.5)

Thus, by means of Eq. (3.5), it follows that d (Ωξ, ξ) < ∞. By means of the Theorem 1 (1), there
exists a continuous function y0 : I → R such that Ωnξ → y0 in (S , d) and Ωy0 = y0, then y0 satisfies{

HDυ,ζ;ψ
t0+ y0 (t) = F (t, y0 (t) , y0 (t − a)) , t ∈ [t0,T ]
y0 (t) = Φ (t) , t ∈ [t0 − a, t0] .

Now consider for any g ∈ S , such that g and ξ are bounded on I, then exist a constant 0 < Mg < ∞

such that
|ξ (t) − g (t)| ≤ Mgϕ (t)

for t ∈ I.
Thus, we can write ∀g ∈ S , d (ξ, g) < ∞ with S = {g ∈ S ; d (ξ, g) < ∞}. Furthermore, it is clear that

− φ (t) ≤ HDυ,ζ;ψ
t0+ y (t) − F (t, y (t) , y (t − a)) ≤ φ (t) , ∀t ∈ [t0,T ] . (3.6)

Applying the fractional integral Iυ;ψ
t0 (·) on both sides of Eq.(3.6), we have∣∣∣∣∣∣y (t) − Ψγ(t, t0)Φ (t0) −

1
Γ (υ)

∫ t

t0
Nυ
ψ(t, u)F (u, y (u) , y (u − a)) du

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
Γ (υ)

∫ t

t0
Nυ
ψ(t, u)φ (u) du

∣∣∣∣∣∣ ≤ Kφ (t) , t ∈ [t0,T ] .

This form, by definition Ω, finishes

|y (t) − (Ωy) (t)| ≤ Kφ (t) , t ∈ I.

Consequently, it implies that d (y,Ωy) ≤ K . By means of Theorem 1 (3) and the last estimative, we
have

d (y, y0) ≤
1

1 − K (L1 +L2)
d (Ωy, y) ≤

Kφ (t)
1 − K (L1 +L2)

, ∀t ∈ I.

Thus, by Theorem 1 (2), we conclude that there exists y0, the unique continuous function with the
property Eq. (3.1). �
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Remark 1. One of the advantages of working with Ulam-Hyers and Ulam-Hyers-Rassias stabilities,
or any other type of stability with the global fractional differential operator so-called ψ-Hilfer, is that
the results obtained in this way, are also valid for their respective individual cases.

4. Ulam-Hyers stability

In this section, we investigate the second main result of the paper, the Ulam-Hyers stability, again
making use of the Banach fixed point theorem.

Theorem 3. Suppose that F : I × R × R → R is a continuous function with the following Lipschitz
condition

|F (t, x, y) − F (t, z,w)| ≤ L1 |x − z| +L2 |y − w| ,

where (t, x, y) , (t, z,w) ∈ I × R × R and 0 <
(ψ (T ))υ (L1 +L2)

Γ (υ + 1)
< 1.

Let Φ ∈ C1−γ;ψ [t0 − a, t] and ε ≥ 0. If a continuous function y : I → R satisfies{ ∣∣∣HDυ,ζ;ψ
t0+ y (t) − F (t, y (t) , y (t − a))

∣∣∣ < ε, t ∈ [t0,T ]
|y (t) − Φ (t)| < ε, t ∈ [t0 − a, t0]

then there exists a unique continuous function y0 : I → R such that{
HDυ,ζ;ψ

t0+ y0 (t) = F (t, y0 (t) , y0 (t − a)) , t ∈ [t0,T ]
y0 (t) = Φ (t) , t ∈ [t0 − a, t0]

(4.1)

and

|y (t) − y0 (t)| ≤
ε (ψ (T ))υ

Γ (υ + 1) − (ψ (T ))υ (L1 +L2)
, ∀t ∈ I. (4.2)

Proof. For the proof, we consider the following generalized metric over S , given by

d1 (ϕ, µ) = inf {M ∈ [0,∞] : |ϕ (t) − µ (t)| ≤ M, ∀t ∈ I} .

Note that, (S , d1) is a generalized complete metric space.
For any ϕ, µ ∈ S and Mϕ,µ ∈ {M ∈ [0,∞] : |ϕ (t) − µ (t)| ≤ M, ∀t ∈ I}, using Eq. (3.4), we obtain

|(Ωϕ) (t) − (Ωµ) (t)| =

∣∣∣∣∣∣∣∣∣∣∣
1

Γ (υ)

∫ t

t0
Nυ
ψ(t, u)F (u, φ (u) , φ (u − a)) du

−
1

Γ (υ)

∫ t

t0
Nυ
ψ(t, u)F (u, µ (u) , µ (u − a)) du

∣∣∣∣∣∣∣∣∣∣∣
≤

1
Γ (υ)

∫ t

t0
Nυ
ψ(t, u) (L1 |φ (u) − µ (u)| +L2 |φ (u − a) − µ (u − a)|) du

≤
L1Mϕ,µ

Γ (υ)

∫ t

t0
Nυ
ψ(t, u)du +

L2Mϕ,µ

Γ (υ)

∫ t

t0
Nυ
ψ(t, u)du

≤
(L1 +L2) Mϕ,µ

Γ (υ + 1)
(ψ (T ))υ

and
|(Ωϕ) (t) − (Ωµ) (t)| = Φ (t) − Φ (t) = 0, ∀t ∈ [t0 − a, t0]
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which imply that d1 (Ωϕ,Ωµ) ≤
(L1 + L2) (ψ (T ))υ

Γ (υ + 1)
d (ϕ, µ).

Since 0 <
(ψ (T ))υ (L1 +L2)

Γ (υ + 1)
< 1, then Ω is strictly contractive on S .

Now, for an arbitrary δ ∈ S and using the fact that F (t, δ (t) , δ (t − a)) and δ (t), are bounded on S ,
we can show d1 (Ωδ, δ) < ∞. Hence, from Theorem 1 (1), there exists a continuous function y0 : I → R
such that Ωnξ → y0 in (S , d1) and Ωy0 = y0, then y0 satisfies{

HDυ,ζ;ψ
t0+ y0 (t) = F (t, y0 (t) , y0 (t − a)) , t ∈ [t0,T ]
y0 (t) = Φ (t) , t ∈ [t0 − a, t0] .

Using the fact that g and δ are bounded on I, then d1 (δ, g) < ∞, ∀g ∈ S , with S = {d1 (δ, y) < ∞}.
Then, using Theorem 1 (2), y0 is the unique continuous function with the property Eq.(4.1). Note

that,
− ε ≤ HDυ,ζ;ψ

t0+ y (t) − F (t, y (t) , y (t − a)) ≤ ε (4.3)

for all t ∈ [t0,T ].
Applying the fractional integral Iυ;ψ

t0 (·), on both sides of Eq.(4.3), we get∣∣∣∣∣∣y (t) − Ψγ(t, t0) −
1

Γ (υ)

∫ t

t0
Nυ
ψ(t, u)F (u, y (u) , y (u − a)) du

∣∣∣∣∣∣ εIυ;ψ
t0 (1) ≤

ε (ψ (T ))υ

Γ (υ + 1)
(4.4)

for each t ∈ I.
By means of Theorem 1 (3) and Eq. (4.4), we get

d1 (y, y0) ≤
ε (ψ (T ))υ

Γ (υ + 1)
(
1 −

(ψ (T ))υ (L1 +L2)
Γ (υ + 1)

)
=

ε (ψ (T ))υ

Γ (υ + 1) − (ψ (T ))υ (L1 +L2)
,

which concludes the proof. �

Corollary 1. Suppose the conditions of the Theorem 2. If a continuous function y : I → R satisfies{ ∣∣∣Dυ
t0+y (t) − F (t, y (t) , y (t − a))

∣∣∣ < ε, t ∈ [t0,T ]
|y (t) − Φ (t)| < ε, t ∈ [t0 − a, t0]

(4.5)

then there exists a unique continuous function y0 : I → R such that{
Dυ

t0+y0 (t) = F (t, y0 (t) , y0 (t − a)) , t ∈ [t0,T ]
y0 (t) = Φ (t) , t ∈ [t0 − a, t0]

(4.6)

and

|y (t) − y0 (t)| ≤
ε (ln T )υ

Γ (υ + 1) − (ln T )υ (L1 +L2)
, ∀t ∈ I, (4.7)

whereDt0+(·) is the Hadamard fractional derivative.
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Proof. The proof is a direct consequence of the Theorem 2. �

Corollary 2. Suppose the conditions of the Theorem 2. If a continuous function y : I → R satisfies{
|y′ (t) − F (t, y (t) , y (t − a))| < ε, t ∈ [t0,T ]

|y (t) − Φ (t)| < ε, t ∈ [t0 − a, t0]
(4.8)

then there exists a unique continuous function y0 : I → R such that{
y′0 (t) = F (t, y0 (t) , y0 (t − a)) , t ∈ [t0,T ]
y0 (t) = Φ (t) , t ∈ [t0 − a, t0]

(4.9)

and
|y (t) − y0 (t)| ≤

εT
1 − T (L1 +L2)

, ∀t ∈ I. (4.10)

Proof. The proof is a direct consequence of the Theorem 2. �

Remark 2. The following fractional differential equation
HDυ,ζ;ψ

t0+ y (t) = F (t, y (t)) (4.11)

is a special case of Eq. (1.1). Consequently, the results proposed here are also valid for Eq. (4.11).
Applying the limit υ → 1 on both sides of the Eq. (4.11), we obtain the following first order

differential equation [19]
y′ (t) = F (t, y (t)) ,

which, in turn, the results proposed here, are also valid.

5. Concluding remarks

The study of Ulam-Hyers-type stability of solutions of the fractional functional differential
equations has been the object of much study and investigated by many researchers
[1, 5, 8, 20, 21, 22, 26, 30, 45]. Although it is yet a field of mathematics that is in expansion, over the
years countless works have been published and others are yet to come. In this sense, the paper
presented a discussion on the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the fractional
functional differential equation Eq. (1.1) through the Banach fixed point theorem, which contributes
to the growth of this area.

From this contribution, the natural question that arises is whether by means of the ψ-Hilfer fractional
derivative it is also possible to obtain the stabilities investigated here in the function space Lp,υ(I,R)?
And using another fixed point theorem? Another possibility of study is to investigate other types of
stabilities such as δ-Ulam-Hyers-Rassias, semi-Ulam-Hyers-Rassias and Mittag-Leffler-Ulam using
the same fractional differentiable operator [37, 38, 46]. Studies in this direction are being prepared and
will be published in the near future.
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