Citation: Erdal Bas, Ramazan Ozarslan, Resat Yilmazer. Spectral structure and solution of fractional hydrogen atom difference equations[J]. AIMS Mathematics, 2020, 5(2): 1359-1371. doi: 10.3934/math.2020093
[1] | J. B. Diaz, T. J. Osler, Differences of fractional order, Math. Comput., 28 (1974), 185-202. doi: 10.1090/S0025-5718-1974-0346352-5 |
[2] | K. S. Miller, B. Ross, Fractional difference calculus, Proceedings of the international symposium on univalent functions, fractional calculus and their applications, 1988. |
[3] | H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math. Comput., 50 (1988), 513-529. doi: 10.1090/S0025-5718-1988-0929549-2 |
[4] | C. Goodrich, A. C. Peterson, Discrete fractional calculus, Berlin: Springer, 2015. |
[5] | D. Baleanu, S. Rezapour, S. Salehi, On some self-adjoint fractional finite difference equations, J. Comput. Anal. Appl., 19 (2015). |
[6] | G. C. Wu, D. Baleanu, S. D. Zeng, et al. Mittag-Leffler function for discrete fractional modelling, J. King Saud Univ. Sci., 28 (2016), 99-102. doi: 10.1016/j.jksus.2015.06.004 |
[7] | K. Ahrendt, T. Rolling, L. Dewolf, et al. Initial and boundary value problems for the caputo fractional self-adjoint difference equations, EPAM, 2 (2016), 105-141. |
[8] | F. M. Atıcı, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theo., 2009 (2009), 1-12. |
[9] | F. Atici, P. Eloe, Initial value problems in discrete fractional calculus, Proceedings of the American Mathematical Society, 137 (2009), 981-989. |
[10] | G. A. Anastassiou, Right nabla discrete fractional calculus, Int. J. Difference Equ., 6 (2011), 91-104. |
[11] | T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Adv. Differ. EquNY, 2013 (2013), 36. |
[12] | T. Abdeljawad, D. Baleanu, Fractional Differences and Integration by Parts, J. Comput. Anal. Appl., 13 (2011). |
[13] | T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602-1611. doi: 10.1016/j.camwa.2011.03.036 |
[14] | T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 1-13. |
[15] | T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013. |
[16] | T. Abdeljawad, R. Mert, A. Peterson, Sturm Liouville Equations in the frame of fractional operators with exponential kernels and their discrete versions, Quaestiones Mathematicae, 49 (2019), 1271-1289. |
[17] | J. Hein, Z. McCarthy, N. Gaswick, et al. Laplace transforms for the nabla-difference operator, Pan American Mathematical Journal, 21 (2011), 79-96. |
[18] | J. F. Cheng, Y. M. Chu, Fractional difference equations with real variable, Abstr. Appl. Anal., 2012 (2012). |
[19] | D. Mozyrska, M. Wyrwas, Solutions of fractional linear difference systems with Caputo-type operator via transform method, ICFDA'14 International Conference on Fractional Differentiation and Its Applications, 2014 (2014), 1-6. |
[20] | L. Abadias, C. Lizama, P. J. Miana, et al. On well-posedness of vector-valued fractional differential-difference equations, Discrete Cont. DYN-A, 39 (2019), 2679-2708. doi: 10.3934/dcds.2019112 |
[21] | I. K. Dassios, A practical formula of solutions for a family of linear non-autonomous fractional nabla difference equations, J. Comput. Appl. Math., 339 (2018), 317-328. doi: 10.1016/j.cam.2017.09.030 |
[22] | J. Prakash, M. Kothandapani, V. Bharathi, Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method, Alex. Eng. J., 55 (2016), 645-651. doi: 10.1016/j.aej.2015.12.006 |
[23] | C. N. Angstmann, B. I. Henry, Generalized fractional power series solutions for fractional differential equations, Appl. Math. Lett., 102 (2020), 106107. |
[24] | R. Saleh, M. Kassem, S. M. Mabrouk, Exact solutions of nonlinear fractional order partial differential equations via singular manifold method, Chinese J. Phys., 61 (2019), 290-300. doi: 10.1016/j.cjph.2019.09.005 |
[25] | B. Ahmad, M. Alghanmi, S. K. Ntouyas, et al. A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions, 2018. |
[26] | E. Bas, F. Metin, Fractional singular Sturm-Liouville operator for Coulomb potential, Adv. Differ. Equ-NY, 2013 (2013), 300. |
[27] | E. Bas, The Inverse Nodal problem for the fractional diffusion equation, Acta Sci-Technol, 37 (2015), 251-257. doi: 10.4025/actascitechnol.v37i2.17273 |
[28] | M. Klimek, Om P. Agrawal, On a regular fractional Sturm-Liouville problem with derivatives of order in (0, 1), Proceedings of the 13th International Carpathian Control Conference (ICCC), 2012. |
[29] | M. Dehghan, A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114 (2020), 1-15. |
[30] | E. S. Panakhov, A. Ercan, Stabılıty Problem Of Sıngular Sturm-Lıouvılle Equatıon, Twms Journal Of Pure And Applıed Mathematıcs, 8 (2017), 148-159. |
[31] | T. Gulsen, An inverse nodal problem for p-Laplacian Sturm-Liouville equation with Coulomb potential, J. Nonlinear Sci. Appl., 10 (2017), 5393-5401. doi: 10.22436/jnsa.010.10.24 |
[32] | E. Bas, R. Ozarslan, Sturm-Liouville Problem via Coulomb Type in Difference Equations, Filomat, 31 (2017), 989-998. doi: 10.2298/FIL1704989B |
[33] | E. Bas, R. Ozarslan, Sturm-Liouville Difference Equations Having Special Potentials, Journal of Advanced, 6 (2017), 529-533. |
[34] | R. Almeida, A. Malinowska, M. Morgado, et al. Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems, J. Mech. Mater. Struct., 12 (2017), 3-21. doi: 10.2140/jomms.2017.12.3 |
[35] | E. Bas, R. Ozarslan, Theory of discrete fractional Sturm-Liouville equations and visual results, AIMS Mathematics, 4 (2019), 576-595. doi: 10.3934/math.2019.3.576 |
[36] | M. Bohner, T. Cuchta, The Bessel difference equation, Proceedings of the American Mathematical Society, 145 (2017), 1567-1580. |
[37] | M. Bohner, T. Cuchta, The generalized hypergeometric difference equation, Demonstratio Mathematica, 51 (2018), 62-75. doi: 10.1515/dema-2018-0007 |
[38] | T. J. Cuchta, Discrete analogues of some classical special functions, 2015. |
[39] | B. M. Levitan, I. S. Sargsian, Introduction to spectral theory: selfadjoint ordinary differential operators: Selfadjoint Ordinary Differential Operators, American Mathematical Soc., 1975. |
[40] | E. S. Panakhov, R. Yilmazer, A Hochstadt-Lieberman theorem for the hydrogen atom equation, Appl. Comput. Math., 11 (2012), 74-80. |
[41] | E. Bas, E. Panakhov, R. Yılmazer, The uniqueness theorem for hydrogen atom equation, TWMS Journal of Pure and Applied Mathematics, 4 (2013), 20-28. |
[42] | M. Bohner, A. C. Peterson, Advances in dynamic equations on time scales, Springer Science & Business Media, 2002. |