Research article Special Issues

A conservative exponential integrators method for fractional conservative differential equations

  • Received: 05 March 2023 Revised: 05 May 2023 Accepted: 11 May 2023 Published: 06 June 2023
  • MSC : 65M06, 65M70

  • The paper constructs a conservative Fourier pseudo-spectral scheme for some conservative fractional partial differential equations. The scheme is obtained by using the exponential time difference averaged vector field method to approximate the time direction and applying the Fourier pseudo-spectral method to discretize the fractional Laplacian operator so that the FFT technique can be used to reduce the computational complexity in long-time simulations. In addition, the developed scheme can be applied to solve fractional Hamiltonian differential equations because the scheme constructed is built upon the general Hamiltonian form of the equations. The conservation and accuracy of the scheme are demonstrated by solving the fractional Schrödinger equation.

    Citation: Yayun Fu, Mengyue Shi. A conservative exponential integrators method for fractional conservative differential equations[J]. AIMS Mathematics, 2023, 8(8): 19067-19082. doi: 10.3934/math.2023973

    Related Papers:

  • The paper constructs a conservative Fourier pseudo-spectral scheme for some conservative fractional partial differential equations. The scheme is obtained by using the exponential time difference averaged vector field method to approximate the time direction and applying the Fourier pseudo-spectral method to discretize the fractional Laplacian operator so that the FFT technique can be used to reduce the computational complexity in long-time simulations. In addition, the developed scheme can be applied to solve fractional Hamiltonian differential equations because the scheme constructed is built upon the general Hamiltonian form of the equations. The conservation and accuracy of the scheme are demonstrated by solving the fractional Schrödinger equation.



    加载中


    [1] G. Beylkin, J. M. Keiser, L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147 (1998), 362–387. https://doi.org/10.1006/jcph.1998.6093 doi: 10.1006/jcph.1998.6093
    [2] L. Brugnano, C. Zhang, D. Li, A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator, Commun. Nonlinear Sci., 60 (2018), 33–49. https://doi.org/10.1016/j.cnsns.2017.12.018 doi: 10.1016/j.cnsns.2017.12.018
    [3] E. Celledoni, D. Cohen, B. Owren, Symmetric exponential integrators with an application to the cubic Schrödinger equation, Found. Comput. Math., 8 (2008), 303–317. https://doi.org/10.1007/s10208-007-9016-7 doi: 10.1007/s10208-007-9016-7
    [4] J. Cui, Z. Xu, Y. Wang, C. Jiang, Mass-and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation, Appl. Math. Lett., 112 (2021), 106770. https://doi.org/10.1016/j.aml.2020.106770 doi: 10.1016/j.aml.2020.106770
    [5] Q. Du, L. Ju, X. Li, Z. Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal., 57 (2019), 875–898. https://doi.org/10.1137/18M118236X doi: 10.1137/18M118236X
    [6] Y. Fu, W. Cai, Y. Wang. A linearly implicit structure-preserving scheme for the fractional sine-Gordon equation based on the IEQ approach. Appl. Numer. Math., 160 (2021), 368–385. https://doi.org/10.1016/j.apnum.2020.10.009 doi: 10.1016/j.apnum.2020.10.009
    [7] Y. Fu, Z. Xu, W. Cai, Y. Wang, An efficient energy-preserving method for the two-dimensional fractional Schrödinger equation, Appl. Numer. Math., 165 (2021), 232–247. https://doi.org/10.1016/j.apnum.2021.02.010 doi: 10.1016/j.apnum.2021.02.010
    [8] Y. Fu, D. Hu, Y. Wang, High-order structure-preserving algorithms for the multi-dimensional fractional nonlinear Schrödinger equation based on the SAV approach, Math. Comput. Simulat., 185 (2021), 238–255. https://doi.org/10.1016/j.matcom.2020.12.025 doi: 10.1016/j.matcom.2020.12.025
    [9] Y. Gong, Q. Wang, Y. Wang, J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys., 328 (2017), 354–370. https://doi.org/10.1016/j.jcp.2016.10.022 doi: 10.1016/j.jcp.2016.10.022
    [10] X. Gu, Y. Zhao, X. Zhao, B. Carpentieri, Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893–919. https://doi.org/10.4208/nmtma.OA-2020-0020 doi: 10.4208/nmtma.OA-2020-0020
    [11] X. Gu, Y. Wang, W. Cai, Efficient energy-preserving exponential integrators for multi-component Hamiltonian systems, J. Sci. Comput., 92 (2022), 26. https://doi.org/10.1007/s10915-022-01874-z doi: 10.1007/s10915-022-01874-z
    [12] B. Guo, Y. Han, J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 204 (2008), 468–477. https://doi.org/10.1016/j.amc.2008.07.003 doi: 10.1016/j.amc.2008.07.003
    [13] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Berlin: Springer, 2006.
    [14] N. Higham, Functions of matrices: Theory and computation, Society for Industrial and Applied Mathematics, 2008.
    [15] C. Huang, B. Guo, D. Huang, Q. Li, Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data, Sci. China Math., 59 (2016), 1345–1366. https://doi.org/10.1007/s11425-016-5133-6 doi: 10.1007/s11425-016-5133-6
    [16] D. Hu, W. Cai, X. Gu, Y. Wang, Efficient energy preserving Galerkin-Legendre spectral methods for fractional nonlinear Schrödinger equation with wave operator, Appl. Numer. Math., 172 (2022), 608–628. https://doi.org/10.1016/j.apnum.2021.10.013 doi: 10.1016/j.apnum.2021.10.013
    [17] C. Jiang, Y. Wang, W. Cai, A linearly implicit energy-preserving exponential integrator for the nonlinear Klein-gordon equation, J. Comput. Phys., 419 (2020), 109690. https://doi.org/10.1016/j.jcp.2020.109690 doi: 10.1016/j.jcp.2020.109690
    [18] H. Li, Y. Wang, M. Qin, A sixth order averaged vector field method, J. Comput. Math., 34 (2016), 479–498. https://doi.org/10.4208/jcm.1601-m2015-0265 doi: 10.4208/jcm.1601-m2015-0265
    [19] M. Li, X. Gu, C. Huang, M. Fei, G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358 (2018), 256–282. https://doi.org/10.1016/j.jcp.2017.12.044 doi: 10.1016/j.jcp.2017.12.044
    [20] Y. Li, X. Wu, Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems, SIAM J. Sci. Comput., 38 (2016), A1876–A1895. https://doi.org/10.1137/15M102325 doi: 10.1137/15M102325
    [21] S. Longhi, Fractional Schrödinger equation in optics, Opt. Lett., 40 (2015), 1117–1120. http://dx.doi.org/10.1364/OL.40.001117 doi: 10.1364/OL.40.001117
    [22] K. Owolabi, A. Atanganar, Numerical solution of fractional-in-space nonlinear Schrödinge equation with the Riesz fractional derivative, Eur. Phys. J. Plus., 131 (2006), 335. https://doi.org/10.1140/epjp/i2016-16335-8 doi: 10.1140/epjp/i2016-16335-8
    [23] K. Owolabi, K. Patidar, Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology, Appl. Math. Comput., 240 (2014), 30–50. https://doi.org/10.1016/j.amc.2014.04.055 doi: 10.1016/j.amc.2014.04.055
    [24] L. Roncal, P. R. Stinga, Fractional Laplacian on the torus, Commun. Contemp. Math., 18 (2016), 1550033. https://doi.org/10.1142/S0219199715500339 doi: 10.1142/S0219199715500339
    [25] D. Wang, A. Xiao, W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272 (2014), 644–655. https://doi.org/10.1016/j.jcp.2014.04.047 doi: 10.1016/j.jcp.2014.04.047
    [26] P. Wang, C. Huang, Structure-preserving numerical methods for the fractional Schrödinger equation, Appl. Numer. Math., 129 (2018), 137–158. https://doi.org/10.1016/j.apnum.2018.03.008 doi: 10.1016/j.apnum.2018.03.008
    [27] A. Xiao, J. Wang, Symplectic scheme for the Schrödinger equation with fractional Laplacian, Appl. Numer. Math., 146 (2019), 469–487. https://doi.org/10.1016/j.apnum.2019.08.002 doi: 10.1016/j.apnum.2019.08.002
    [28] W. Zeng, A. Xiao, X. Li, Error estimate of Fourier pseudo-spectral method for multidimensional nonlinear complex fractional Ginzburg-Landau equations, Appl. Math. Lett., 93 (2019), 40–45. https://doi.org/10.1016/j.aml.2019.01.041 doi: 10.1016/j.aml.2019.01.041
    [29] Y. Zhao, X. Zhao, A. Ostermann, X. Gu, A low-rank Lie-Trotter splitting approach for nonlinear fractional complex Ginzburg-Landau equations, J. Comput. Phys., 446 (2021), 110652. https://doi.org/10.1016/j.jcp.2021.110652 doi: 10.1016/j.jcp.2021.110652
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1144) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog