Research article Special Issues

Coupled systems with Ambrosetti-Prodi-type differential equations

  • Received: 01 March 2023 Revised: 22 May 2023 Accepted: 24 May 2023 Published: 06 June 2023
  • MSC : 34B08, 34B15, 34B60

  • In this paper, we consider some boundary value problems composed by coupled systems of second-order differential equations with full nonlinearities and general functional boundary conditions verifying some monotone assumptions. The arguments apply the lower and upper solutions method, and defining an adequate auxiliary, homotopic, and truncated problem, it is possible to apply topological degree theory as the tool to prove the existence of solution. In short, it is proved that for the parameter values such that there are lower and upper solutions, then there is also, at least, a solution and this solution is localized in a strip bounded by lower and upper solutions. As far as we know, it is the first paper where Ambrosetti-Prodi differential equations are considered in couple systems with different parameters.

    Citation: F. Minhós, F. Carapau, G. Rodrigues. Coupled systems with Ambrosetti-Prodi-type differential equations[J]. AIMS Mathematics, 2023, 8(8): 19049-19066. doi: 10.3934/math.2023972

    Related Papers:

  • In this paper, we consider some boundary value problems composed by coupled systems of second-order differential equations with full nonlinearities and general functional boundary conditions verifying some monotone assumptions. The arguments apply the lower and upper solutions method, and defining an adequate auxiliary, homotopic, and truncated problem, it is possible to apply topological degree theory as the tool to prove the existence of solution. In short, it is proved that for the parameter values such that there are lower and upper solutions, then there is also, at least, a solution and this solution is localized in a strip bounded by lower and upper solutions. As far as we know, it is the first paper where Ambrosetti-Prodi differential equations are considered in couple systems with different parameters.



    加载中


    [1] A. Wang, J. Sun, A. Zettl, The classification of self-adjoint boundary conditions: Separated, coupled, and mixed, J. Funct. Anal., 255 (2008), 1554–1573. https://doi.org/10.1016/j.jfa.2008.05.003 doi: 10.1016/j.jfa.2008.05.003
    [2] F. Minhós, R. de Sousa, Solvability of second-order coupled systems on the half-line, Lith. Math. J., 59 (2019), 198–212. https://doi.org/10.1007/s10986-019-09419-y doi: 10.1007/s10986-019-09419-y
    [3] R. Sousa, F. Minhós, Heteroclinic and homoclinic solutions for nonlinear second-order coupled systems with $\phi $-Laplacians, Comp. Appl. Math., 40 (2021), 169. https://doi.org/10.1007/s40314-021-01556-w doi: 10.1007/s40314-021-01556-w
    [4] F. Minhós, R. de Sousa, Nonlinear higher order differential and integral coupled systems: Impulsive and integral equations on bounded and unbounded domains, World Scientific, 2022. https://doi.org/10.1142/11961
    [5] H. Amann, Parabolic evolution and nonlinear boundary conditions, J. Differ. Equations, 72 (1988), 201–269. https://doi.org/10.1016/0022-0396(88)90156-8 doi: 10.1016/0022-0396(88)90156-8
    [6] R. Aris, Introduction to the analysis of chemical reactors, Prentice-Hall, 1965.
    [7] D. G. Aronson, A comparison method for stability analysis of nonlinear parabolic problems, SIAM Rev., 20 (1978), 245–264. https://doi.org/10.1137/1020038 doi: 10.1137/1020038
    [8] A. Leung, A semilinear reaction-diffusion prey-predator system with nonlinear coupled boundary conditions: Equilibrium and Stability, Indiana U. Math. J., 31 (1982), 223–241.
    [9] F. A. Mehmeti, S. Nicaise, Nonlinear interaction problems, Nonlinear Anal. Theor., 20 (1993), 27–61. https://doi.org/10.1016/0362-546X(93)90183-S doi: 10.1016/0362-546X(93)90183-S
    [10] S. Hussain, E. Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour, et al., On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Space., 2022 (2022), 4320865. https://doi.org/10.1155/2022/4320865 doi: 10.1155/2022/4320865
    [11] M. Ahmad, M. Ghaderi, R. George, S. Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract., 6 (2022), 203. https://doi.org/10.3390/fractalfract6040203 doi: 10.3390/fractalfract6040203
    [12] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668, https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [13] A. Ambrosetti, G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pur. Appl., 93 (1972), 231–246. https://doi.org/10.1007/BF02412022 doi: 10.1007/BF02412022
    [14] J. Mawhin, C. Rebelo, F. Zanolin, Continuation theorems for Ambrosetti-Prodi type periodic problems, Commun. Contemp. Math., 2 (2000), 87–126. https://doi.org/10.1142/S0219199700000074 doi: 10.1142/S0219199700000074
    [15] M. Senkyrik, Existence of multiple solutions for a third-order three-point regular boundary value problem, Math. Bohem., 119 (1994), 113–121. https://doi.org/10.21136/MB.1994.126080 doi: 10.21136/MB.1994.126080
    [16] J. Fialho, F. Minhós, Multiplicity and location results for second order functional boundary value problems, Dynam. Syst. Appl., 23 (2014), 453–464.
    [17] E. Sovrano, Ambrosetti-Prodi type result to a Neumann problem via a topological approach, Discrete Cont. Dyn. S, 11 (2018), 345–355. https://doi.org/10.3934/dcdss.2018019 doi: 10.3934/dcdss.2018019
    [18] Q. Chen, J. Li, Existence of multiple positive solutions for third-order three-point boundary value problem, J. Appl. Math. Phys., 7 (2019), 1463–1472. https://doi.org/10.4236/jamp.2019.77098 doi: 10.4236/jamp.2019.77098
    [19] C. Fabry, J. Mawhin, M. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, B. Lond. Math. Soc., 18 (1986), 173–180. https://doi.org/10.1112/blms/18.2.173 doi: 10.1112/blms/18.2.173
    [20] G. Feltrin, E. Sovrano, F. Zanolin, Periodic solutions to parameter-dependent equations with a $\phi$-Laplacian type operator, Nonlinear Differ. Equ. Appl., 26 (2019), 38. https://doi.org/10.1007/s00030-019-0585-3 doi: 10.1007/s00030-019-0585-3
    [21] J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc., 8 (2006), 375–388. https://doi.org/10.4171/JEMS/58 doi: 10.4171/JEMS/58
    [22] X. Yu, S. Lu, A singular periodic Ambrosetti-Prodi problem of Rayleigh equations without coercivity conditions, Commun. Contemp. Math., 24 (2022), 2150012. https://doi.org/10.1142/S0219199721500127 doi: 10.1142/S0219199721500127
    [23] F. Minhós, N. Oliveira, Periodic third-order problems with a parameter, Axioms, 10 (2021), 222, https://doi.org/10.3390/axioms10030222 doi: 10.3390/axioms10030222
    [24] F. Minhós, N. Oliveira, Bifurcation results for periodic third-order Ambrosetti-Prodi-type problems, Axioms, 11 (2022), 387. https://doi.org/10.3390/axioms11080387 doi: 10.3390/axioms11080387
    [25] N. S. Papageorgiou, V. D. Rădulescu, J. Zhang, Ambrosetti-Prodi problems for the Robin $(p, q)$-Laplacian, Nonlinear Anal. Real, 67 (2022), 103640. https://doi.org/10.1016/j.nonrwa.2022.103640 doi: 10.1016/j.nonrwa.2022.103640
    [26] L. Ding, M. Sun, R. Tian, A remark on the Ambrosetti-Prodi type problem, Appl. Math. Lett., 111 (2021), 106648. https://doi.org/10.1016/j.aml.2020.106648 doi: 10.1016/j.aml.2020.106648
    [27] V. Ambrosio, T. Isernia, The critical fractional Ambrosetti-Prodi problem, Rend. Circ. Mat. Palerm., 71 (2022), 1107–1132. https://doi.org/10.1007/s12215-022-00757-4 doi: 10.1007/s12215-022-00757-4
    [28] F. Obersnel, P. Omari, On the periodic Ambrosetti-Prodi problem for a class of ODEs with nonlinearities indefinite in sign, Appl. Math. Lett., 111 (2021), 106622. https://doi.org/10.1016/j.aml.2020.106622 doi: 10.1016/j.aml.2020.106622
    [29] E. Sovrano, F. Zanolin, Ambrosetti-Prodi periodic problem under local coercivity conditions, Adv. Nonlinear Stud., 18 (2018), 169–182. https://doi.org/10.1515/ans-2017-6040 doi: 10.1515/ans-2017-6040
    [30] F. Minhós, On some third order nonlinear boundary value problems: Existence, location and multiplicity results, J. Math. Anal. Appl., 339 (2008), 1342–1353. https://doi.org/10.1016/j.jmaa.2007.08.005 doi: 10.1016/j.jmaa.2007.08.005
    [31] J. Fialho, F. Minhós, Existence and location results for hinged beam equations with unbounded nonlinearities, Nonlinear Anal. Theor., 71 (2009), e1519–e1526. https://doi.org/10.1016/j.na.2009.01.193 doi: 10.1016/j.na.2009.01.193
    [32] C. Fabry, P. Habets, Upper and lower solutions for second-order boundary value problems with nonlinear boundary conditions, Nonlinear Anal. Theor., 10 (1986), 985–1007. https://doi.org/10.1016/0362-546X(86)90084-2 doi: 10.1016/0362-546X(86)90084-2
    [33] M. Nkashama, A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations, J. Math. Anal. Appl., 140 (1989), 381–395. https://doi.org/10.1016/0022-247X(89)90072-3 doi: 10.1016/0022-247X(89)90072-3
    [34] M. Nagumo, Über die diferencialgleichung $ y_{1}^{\prime \prime } = f(x, y_{1}, y_{1}^{\prime })$, Nippon Sugaku-Buturigakkwai Kizi Dai 3 Ki, 19 (1937), 861–866. https://doi.org/10.11429/ppmsj1919.19.0_861 doi: 10.11429/ppmsj1919.19.0_861
    [35] C. Fabry, Nagumo conditions for systems of second-order differential equations, J. Math. Anal. Appl., 107 (1985), 132–143. https://doi.org/10.1016/0022-247X(85)90358-0 doi: 10.1016/0022-247X(85)90358-0
    [36] J. Innes, L. Jackson, Nagumo conditions for ordinary differential equations, Int. Conf. Differ. Equ., 1975,385–398. https://doi.org/10.1016/B978-0-12-059650-8.50035-1 doi: 10.1016/B978-0-12-059650-8.50035-1
    [37] N. G. Lloyd, Degree theory, Cambridge University Press, 1978.
    [38] I. Fonseca, W. Gangbo, Degree theory in analysis and applications, Oxford University Press, 1995.
    [39] H. Wang, F. Wang, K. Xu, Modeling information diffusion in online social networks with partial differential equations, Springer Cham, 2020. https://doi.org/10.1007/978-3-030-38852-2
    [40] H. Tu, T. Phan, K. Nguyen, Modeling information diffusion in social networks with ordinary linear differential equations, Inform. Sciences, 593 (2022), 614–636. https://doi.org/10.1016/j.ins.2022.01.063 doi: 10.1016/j.ins.2022.01.063
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1150) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog