In this paper, we prove Liouville type theorem of positive weak solution of nonlinear system for Grushin operator. We give some integral inequalities, which combine the method of moving plane with the integral inequality to get the result for nonlinear system.
Citation: Xinjing Wang. Liouville type theorem for weak solutions of nonlinear system for Grushin operator[J]. AIMS Mathematics, 2023, 8(8): 19039-19048. doi: 10.3934/math.2023971
In this paper, we prove Liouville type theorem of positive weak solution of nonlinear system for Grushin operator. We give some integral inequalities, which combine the method of moving plane with the integral inequality to get the result for nonlinear system.
[1] | A. Bahrouni, V. D. Radulescu, P. Winkert, Double phase problems with variable growth and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys., 71 (2020), 1–15. https://doi.org/10.1007/s00033-020-01412-7 doi: 10.1007/s00033-020-01412-7 |
[2] | L. A. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271–297. https://doi.org/10.1002/cpa.3160420304 doi: 10.1002/cpa.3160420304 |
[3] | E. Cinti, J. G. Tan, A nonlinear Liouville theorem for fractional equations in the Heisenberg group, J. Math. Anal. Appl., 433 (2016), 434–454. https://doi.org/10.1016/j.jmaa.2015.07.050 doi: 10.1016/j.jmaa.2015.07.050 |
[4] | W. X. Chen, C. M. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615–622. https://doi.org/10.1215/S0012-7094-91-06325-8 doi: 10.1215/S0012-7094-91-06325-8 |
[5] | W. X. Chen, C. M. Li, Methods on nonlinear elliptic equations, American Institute of Mathematical Sciences, 2010. |
[6] | W. X. Chen, C. M. Li, B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330–343. https://doi.org/10.1002/cpa.20116 doi: 10.1002/cpa.20116 |
[7] | D. G. De Figueiredo, P. L. Felmer, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 21 (1994), 387–397. |
[8] | L. Damascelli, F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), 67–86. |
[9] | B. Franchi, E. Lanconelli, Hölder regularity theorem for a class of nonuniformly elliptic operators with measurable coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (1983), 523–541. |
[10] | B. Franchi, G. Z. Lu, R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Int. Math. Res. Notices, 1996 (1996), 1–14. https://doi.org/10.1155/S1073792896000013 doi: 10.1155/S1073792896000013 |
[11] | R. L. Frank, M. del Mar Gonzälez, D. D. Monticelli, J. G. Tan, An extension problem for the CR fractional Laplacian, Adv. Math., 270 (2015), 97–137. https://doi.org/10.1016/j.aim.2014.09.026 doi: 10.1016/j.aim.2014.09.026 |
[12] | B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525–598. https://doi.org/10.1002/cpa.3160340406 doi: 10.1002/cpa.3160340406 |
[13] | B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209–243. https://doi.org/10.1007/BF01221125 doi: 10.1007/BF01221125 |
[14] | Y. X. Guo, J. Q. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb{R}^n$, Commun. Partial Differ. Equ., 33 (2008), 263–284. https://doi.org/10.1080/03605300701257476 doi: 10.1080/03605300701257476 |
[15] | M. Jleli, M. A. Ragusa, B. Samet, Nonlinear Liouville-type theorems for generalized Baouendi-Grushin operator on Riemannian manifolds, Adv. Differ. Equ., 28 (2023), 143–168. https://doi.org/10.57262/ade028-0102-143 doi: 10.57262/ade028-0102-143 |
[16] | R. Monti, D. Morbidelli, Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J., 131 (2006), 167–202. https://doi.org/10.1215/S0012-7094-05-13115-5 doi: 10.1215/S0012-7094-05-13115-5 |
[17] | A. Quaas, A. Xia, A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinearity, 29 (2016), 2279. https://doi.org/10.1088/0951-7715/29/8/2279 doi: 10.1088/0951-7715/29/8/2279 |
[18] | J. Serrin, H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena., 46 (1998), 369–380. |
[19] | J. Serrin, H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems, Commun. Partial Differ. Equ., 23 (1998), 577–599. |
[20] | J. G. Tan, X. H. Yu, Liouville type theorems for nonlinear elliptic equations on extended Grushin manifolds, J. Differ. Equ., 269 (2020), 523–541. https://doi.org/10.1016/j.jde.2019.12.014 doi: 10.1016/j.jde.2019.12.014 |
[21] | S. Terracini, Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differ. Integral Equ., 8 (1995), 1911–1922. https://doi.org/10.57262/die/1369056132 doi: 10.57262/die/1369056132 |
[22] | S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differ. Equ., 1 (1996), 241–264. https://doi.org/10.57262/ade/1366896239 doi: 10.57262/ade/1366896239 |
[23] | Y. Y. Wan, C. L. Xiang, Uniqueness of positive solutions to some nonlinear Neumann problems, J. Math. Anal. Appl., 455 (2017), 1835–1847. https://doi.org/10.1016/j.jmaa.2017.06.006 doi: 10.1016/j.jmaa.2017.06.006 |
[24] | X. J. Wang, Liouville type theorem for fractional Laplacian system, Commun. Pure Appl. Anal., 19 (2020), 5253–5268. https://doi.org/10.3934/cpaa.2020236 doi: 10.3934/cpaa.2020236 |
[25] | X. J. Wang, X. W. Cui, P. C. Niu, A Liouville theorem for the semilinear fractional CR covariant equation on the Heisenberg group, Complex Var. Elliptic Equ., 64 (2019), 1325–1344. https://doi.org/10.1080/17476933.2018.1523898 doi: 10.1080/17476933.2018.1523898 |
[26] | X. J. Wang, P. C. Niu, X. W. Cui, A Liouville type theorem to an extension problem relating to the Heisenberg group, Commun. Pure Appl. Anal., 17 (2018), 2379–2394. https://doi.org/10.3934/cpaa.2018113 doi: 10.3934/cpaa.2018113 |
[27] | Y. Wang, Y. H. Wei, Liouville property of fractional Lane-Emden equation in general unbounded domain, Adv. Nonlinear Anal., 10 (2021), 494–500. https://doi.org/10.1515/anona-2020-0147 doi: 10.1515/anona-2020-0147 |
[28] | Y. F. Wei, C. S. Chen, Q. Chen, H. W. Yang, Liouville-type theorem for nonlinear elliptic equations involving $p$-Laplace-type Grushin operators, Math. Methods Appl. Sci., 43 (2020), 320–333. https://doi.org/10.1002/mma.5886 doi: 10.1002/mma.5886 |
[29] | X. H. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math., 17 (2015), 1450050. https://doi.org/10.1142/S0219199714500503 doi: 10.1142/S0219199714500503 |