Research article

Global exponential stability conditions for quaternion-valued neural networks with leakage, transmission and distribution delays

  • Received: 05 April 2023 Revised: 16 May 2023 Accepted: 25 May 2023 Published: 06 June 2023
  • MSC : 93D20

  • This paper studies the global exponential stability problem of quaternion-valued neural networks (QVNNs) with leakage, transmission, and distribution delays. To address this issue, a direct method based on system solutions is proposed to ensure the global exponential stability of the considered network models. In addition, this method does not need to construct any Lyapunov-Krasovskii functional, which greatly reduces the amount of computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results.

    Citation: Li Zhu, Er-yong Cong, Xian Zhang. Global exponential stability conditions for quaternion-valued neural networks with leakage, transmission and distribution delays[J]. AIMS Mathematics, 2023, 8(8): 19018-19038. doi: 10.3934/math.2023970

    Related Papers:

  • This paper studies the global exponential stability problem of quaternion-valued neural networks (QVNNs) with leakage, transmission, and distribution delays. To address this issue, a direct method based on system solutions is proposed to ensure the global exponential stability of the considered network models. In addition, this method does not need to construct any Lyapunov-Krasovskii functional, which greatly reduces the amount of computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results.



    加载中


    [1] Y. Chen, X. Zhang, Y. Xue, Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays, Math. Comput. Simulat., 193 (2022), 173–189. http://doi.org/10.1016/j.matcom.2021.10.012 doi: 10.1016/j.matcom.2021.10.012
    [2] Z. Dong, X. Wang, X. Zhang, M. Hu, T. N. Dinh, Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption, Nonlinear Anal. Hybrid Syst., 47 (2023), 101291. http://doi.org/10.1016/j.nahs.2022.101291 doi: 10.1016/j.nahs.2022.101291
    [3] J. Hu, Z. Wang, G.-P. Liu, H. Zhang, R. Navaratne, A prediction-based approach to distributed filtering with missing measurements and communication delays through sensor networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (2021), 7063–7074. http://doi.org/10.1109/TSMC.2020.2966977 doi: 10.1109/TSMC.2020.2966977
    [4] J. Hu, G. Liu, H. Zhang, H. Liu, On state estimation for nonlinear dynamical networks with random sensor delays and coupling strength under event-based communication mechanism, Inform. Sciences, 511 (2020), 265–283. http://doi.org/10.1016/j.ins.2019.09.050 doi: 10.1016/j.ins.2019.09.050
    [5] P. Yu, F. Deng, Almost sure stability of stochastic neutral Cohen-Grossberg neural networks with levy noise and time-varying delays, Asian J. Control, 25 (2023), 371–382. http://doi.org/10.1002/asjc.2777 doi: 10.1002/asjc.2777
    [6] F. Du, J.-G. Lu, New results on finite-time stability of fractional-order Cohen-Grossberg neural networks with time delays, Asian J. Control, 24 (2022), 2328–2337. http://doi.org/10.1002/asjc.2641 doi: 10.1002/asjc.2641
    [7] J. Qin, Y. Li, New results on exponential stability of competitive neural networks with multi-proportional delays, Asian J. Control, 22 (2020), 750–760. http://doi.org/10.1002/asjc.1926 doi: 10.1002/asjc.1926
    [8] F. Mazenc, M. Malisoff, T. N. Dinh, Robustness of nonlinear systems with respect to delay and sampling of the controls, Automatica, 49 (2013), 1925–1931. http://doi.org/10.1016/j.automatica.2013.02.064 doi: 10.1016/j.automatica.2013.02.064
    [9] Y. Sheng, Z. Zeng, T. Huang, Finite-time synchronization of neural networks with infinite discrete time-varying delays and discontinuous activations, IEEE Trans. Neural Networks Learn. Syst., in press. http://doi.org/10.1109/TNNLS.2021.3110880
    [10] Y. Sheng, Z. Zeng, T. Huang, Finite-time stabilization of competitive neural networks with time-varying delays, IEEE Trans. Cybernetics, 52 (2022), 11325–11334. http://doi.org/10.1109/TCYB.2021.3082153 doi: 10.1109/TCYB.2021.3082153
    [11] X. Song, X. Sun, J. Man, S. Song, Q. Wu, Synchronization of fractional-order spatiotemporal complex-valued neural networks in finite-time interval and its application, J. Franklin Inst., 358 (2021), 8207–8225. http://doi.org/10.1016/j.jfranklin.2021.08.016 doi: 10.1016/j.jfranklin.2021.08.016
    [12] S. Mongolian, Y. Kao, C. Wang, H. Xia, Robust mean square stability of delayed stochastic generalized uncertain impulsive reaction-diffusion neural networks, J. Franklin Inst., 358 (2021), 877–894. http://doi.org/10.1016/j.jfranklin.2020.04.011 doi: 10.1016/j.jfranklin.2020.04.011
    [13] H. Shen, Z. Huang, Z. Wu, J. Cao, J. H. Park, Nonfragile ${H}_{\infty}$ synchronization of BAM inertial neural networks subject to persistent dwell-time switching regularity, IEEE Trans. Cybernetics, 52 (2022), 6591–6602. http://doi.org/10.1109/TCYB.2021.3119199 doi: 10.1109/TCYB.2021.3119199
    [14] H. Shen, X. Hu, J. Wang, J. Cao, W. Qian, Non-fragile $H_{\infty}$ synchronization for Markov jump singularly perturbed coupled neural networks subject to double-layer switching regulation, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 2682–2692. http://doi.org/10.1109/TNNLS.2021.3107607 doi: 10.1109/TNNLS.2021.3107607
    [15] Z. Dong, X. Wang, X. Zhang, A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks, Appl. Math. Comput., 385 (2020), 125401. http://doi.org/10.1016/j.amc.2020.125401 doi: 10.1016/j.amc.2020.125401
    [16] J. Wang, X. Wang, Y. Wang, X. Zhang, Non-reduced order method to global h-stability criteria for proportional delay high-order inertial neural networks, Appl. Math. Comput., 407 (2021), 126308. http://doi.org/10.1016/j.amc.2021.126308 doi: 10.1016/j.amc.2021.126308
    [17] Y. Zhang, L. Zhou, Novel global polynomial stability criteria of impulsive complex-valued neural networks with multi-proportional delays, Neural Comput. Appl., 34 (2022), 2913–2924. http://doi.org/10.1007/s00521-021-06555-w doi: 10.1007/s00521-021-06555-w
    [18] Y. Zhang, L. Zhou, Stabilization and lag synchronization of proportional delayed impulsive complex-valued inertial neural networks, Neurocomputing, 507 (2022), 428–440. http://doi.org/10.1016/j.neucom.2022.08.027 doi: 10.1016/j.neucom.2022.08.027
    [19] S. Zhu, Y. Gao, Y. X. Hou, C. Y. Yang, Reachable set estimation for Memristive complex-valued neural networks with disturbances, IEEE Trans. Neural Networks Learn. Syst., in press. http://doi.org/10.1109/TNNLS.2022.3167117
    [20] Y. Shen, S. Zhu, X. Liu, S. Wen, Multiple Mittag–Leffler stability of fractional-order complex-valued memristive neural networks with delays, IEEE Trans. Cybernetics, in press. http://doi.org/10.1109/TCYB.2022.3194059
    [21] X. Song, J. Man, C. K. Ahn, S. Song, Synchronization in finite/fixed time for Markovian complex-valued nonlinear interconnected neural networks with reaction-diffusion terms, IEEE Trans. Netw. Sci. Eng., 8 (2021), 3313–3324. http://doi.org/10.1109/TNSE.2021.3110414 doi: 10.1109/TNSE.2021.3110414
    [22] Y. Liu, B. Shen, J. Sun, Stubborn state estimation for complex-valued neural networks with mixed time delays: the discrete time case, Neural Comput. Appl., 34 (2021), 5449–5464. http://doi.org/10.1007/s00521-021-06707-y doi: 10.1007/s00521-021-06707-y
    [23] Y. Shi, J. Cao, G. Chen, Exponential stability of complex-valued memristor-based neural networks with time-varying delays, Appl. Math. Comput., 313 (2017), 222–234. http://doi.org/10.1016/j.amc.2017.05.078 doi: 10.1016/j.amc.2017.05.078
    [24] H. Q. Shu, Q. K. Song, J. Liang, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Global exponential stability in Lagrange sense for quaternion-valued neural networks with leakage delay and mixed time-varying delays, Int. J. Syst. Sci., 50 (2019), 858–870. http://doi.org/10.1080/00207721.2019.1586001 doi: 10.1080/00207721.2019.1586001
    [25] R. Y. Wei, J. D. Cao, C. X. Huang, Lagrange exponential stability of quaternion-valued memristive neural networks with time delays, Math. Method. Appl. Sci., 43 (2020), 7269–7291. http://doi.org/10.1002/mma.6463 doi: 10.1002/mma.6463
    [26] Y. H. Chen, Y. Xue, X. N. Yang, X. Zhang, A direct analysis method to Lagrangian global exponential stability for quaternion memristive neural networks with mixed delays, Appl. Math. Comput., 439 (2023), 127633. http://doi.org/10.1016/j.amc.2022.127633 doi: 10.1016/j.amc.2022.127633
    [27] N. Li, J. Cao, Global dissipativity analysis of quaternion-valued memrisor-based neural networks with proportional delay, Neurocomputing, 321 (2018), 103–113. http://doi.org/10.1016/j.neucom.2018.09.030 doi: 10.1016/j.neucom.2018.09.030
    [28] Y. Liu, D. Zhang, J. Lu, J. Cao, Global $\mu$-stability criteria for quaternion-valued neural networks with unbounded time-varying delays, Inform. Sciences, 360 (2016), 273–288. http://doi.org/10.1016/j.ins.2016.04.033 doi: 10.1016/j.ins.2016.04.033
    [29] H. Shu, Q. Song, Y. Liu, Z. Zhao, F. E. Alsaadi, Global $\mu$-stability of quaternion-valued neural networks with non-differentiable time-varying delays, Neurocomputing, 247 (2017), 202–212. http://doi.org/10.1016/j.neucom.2017.03.052 doi: 10.1016/j.neucom.2017.03.052
    [30] S. Kathiresan, A. Kashkynbayev, K. Janani, R. Rakkiyappan, Multi-stability analysis of fractional-order quaternion-valued neural networks with time delay, AIMS Mathematics, 7 (2022), 3603–3629. http://doi.org/10.3934/math.2022199 doi: 10.3934/math.2022199
    [31] L. Li, W. Chen, Exponential stability analysis of quaternion-valued neural networks with proportional delays and linear threshold neurons: continuous-time and discrete-time cases, Neurocomputing, 381 (2020), 152–166. http://doi.org/10.1016/j.neucom.2019.09.051 doi: 10.1016/j.neucom.2019.09.051
    [32] X. Xu, Q. Xu, J. Yang, H. Xue, Y. Xu, Further research on exponential stability for quaternion-valued neural networks with mixed delays, Neurocomputing, 400 (2020), 186–205. http://doi.org/10.1016/j.neucom.2020.03.004 doi: 10.1016/j.neucom.2020.03.004
    [33] X. You, S. Dian, R. Guo, S. Li, Exponential stability analysis for discrete-time quaternion-valued neural networks with leakage delay and discrete time-varying delays, Neurocomputing, 430 (2021), 71–81. http://doi.org/10.1016/j.neucom.2020.12.021 doi: 10.1016/j.neucom.2020.12.021
    [34] H. Wei, B. Wu, Z. Tu, Exponential synchronization and state estimation of inertial quaternion-valued Cohen-Grossberg neural networks: Lexicographical order method, Int. J. Robust Nonlinear Control, 30 (2020), 2171–2185. http://doi.org/10.1002/rnc.4871 doi: 10.1002/rnc.4871
    [35] N. Huo, B. Li, Y. Li, Global exponential stability and existence of almost periodic solutions in distribution for clifford-valued stochastic high-order hopfield neural networks with time-varying delays, AIMS Mathematics, 7 (2022), 3653–3679. http://doi.org/10.3934/math.2022202 doi: 10.3934/math.2022202
    [36] X. Chen, Z. Li, Q. Song, J. Hu, Y. Tan, Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Networks, 91 (2017), 55–65. http://doi.org/10.1016/j.neunet.2017.04.006 doi: 10.1016/j.neunet.2017.04.006
    [37] Y. Tan, X. Wang, J. Yang, J. Hu, Robust exponential stability for discrete-time quaternion-valued neural networks with time delays and parameter uncertainties, Neural Process. Lett., 51 (2020), 2317–2335. http://doi.org/10.1007/s11063-020-10196-w doi: 10.1007/s11063-020-10196-w
    [38] J. Pan, Z. Pan, Novel robust stability criteria for uncertain parameter quaternionic neural networks with mixed delays: Whole quaternionic method, Appl. Math. Comput., 407 (2021), 126326. http://doi.org/10.1016/j.amc.2021.126326 doi: 10.1016/j.amc.2021.126326
    [39] K. Gopalsamy, Leakage delays in BAM, J. Math. Anal. Appl., 325 (2007), 1117–1132. http://doi.org/10.1016/j.jmaa.2006.02.039 doi: 10.1016/j.jmaa.2006.02.039
    [40] X. Wang, J. Zhou, X. Chen, Y. Tan, Parameter-range-dependent robust stability conditions for quaternion-valued neural networks with time delays, Adv. Differ. Equ., 2019 (2019), 181. http://doi.org/10.1186/s13662-019-2046-z doi: 10.1186/s13662-019-2046-z
    [41] J. Zhou, Y. Tan, X. Chen, Z. Liu, Robust stability analysis of impulsive quaternion-valued neural networks with distributed delays and parameter uncertainties, Adv. Differ. Equ., 2021 (2021), 12. http://doi.org/10.1186/s13662-020-03078-x doi: 10.1186/s13662-020-03078-x
    [42] Z. Tu, J. Cao, A. Alsaedi, B. Ahmad, Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach, Nonlinear Anal. Model., 23 (2018), 361–379. http://doi.org/10.15388/NA.2018.3.5 doi: 10.15388/NA.2018.3.5
    [43] Z. Zhang, T. Yu, X. Zhang, Algebra criteria for global exponential stability of multiple time-varying delay cohen–grossberg neural networks, Appl. Math. Comput., 435 (2022), 127461. http://doi.org/10.1016/j.amc.2022.127461 doi: 10.1016/j.amc.2022.127461
    [44] R. Manivannan, R. Samidurai, J. Cao, A. Alsaedi, F. E. Alsaadi, Stability analysis of interval time-varying delayed neural networks including neutral time-delay and leakage delay, Chaos Soliton. Fract., 114 (2018), 433–445. http://doi.org/10.1016/j.chaos.2018.07.041 doi: 10.1016/j.chaos.2018.07.041
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1047) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog