Research article

Some common fixed point theorems in bipolar metric spaces and applications

  • Received: 24 March 2023 Revised: 18 May 2023 Accepted: 28 May 2023 Published: 06 June 2023
  • MSC : 47H10, 54H25

  • In this article, we prove some common fixed point theorems for generalized rational type contractions in bipolar metric spaces. These theorems also generalize and extend several interesting results of metric fixed point theory to the bipolar metric context. In addition, we provide some examples to illustrate our theorems, and applications are obtained in areas of homotopy theory and integral equations by using iterative methods for mathematical operators on a bipolar metric space.

    Citation: Joginder Paul, Mohammad Sajid, Naveen Chandra, Umesh Chandra Gairola. Some common fixed point theorems in bipolar metric spaces and applications[J]. AIMS Mathematics, 2023, 8(8): 19004-19017. doi: 10.3934/math.2023969

    Related Papers:

  • In this article, we prove some common fixed point theorems for generalized rational type contractions in bipolar metric spaces. These theorems also generalize and extend several interesting results of metric fixed point theory to the bipolar metric context. In addition, we provide some examples to illustrate our theorems, and applications are obtained in areas of homotopy theory and integral equations by using iterative methods for mathematical operators on a bipolar metric space.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. http://dx.doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [3] A. Gangwar, A. Tomar, M. Sajid, R. Dimri, Common fixed points and convergence results for $\alpha$-Krasnoselśkii mappings, AIMS Mathematics, 8 (2023), 9911–9923. http://dx.doi.org/10.3934/math.2023501 doi: 10.3934/math.2023501
    [4] D. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math., 8 (1977), 223–230.
    [5] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. http://dx.doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [6] M. Joshi, S. Upadhyay, A. Tomar, M. Sajid, Geometry and application in economics of fixed point, Symmetry, 15 (2023), 704. http://dx.doi.org/10.3390/sym15030704 doi: 10.3390/sym15030704
    [7] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71–76.
    [8] M. Khan, A fixed point theorem for metric spaces, Int. J. Math., 8 (1976), 69–72.
    [9] G. Kishore, D. Prasad, B. Rao, V. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, Journal of Critical Reviews, 7 (2020), 601–607. http://dx.doi.org/10.31838/jcr.07.02.110 doi: 10.31838/jcr.07.02.110
    [10] G. Kishore, R. Agarwal, B. Rao, R. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl., 2018 (2018), 21. http://dx.doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z
    [11] G. Kishore, K. Rao, A. Sombabu, R. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 8485412. http://dx.doi.org/10.1155/2019/8485412 doi: 10.1155/2019/8485412
    [12] G. Kishore, H. Isik, H. Aydi, B. Rao, D. Prasad, On new types of contraction mappings in bipolar metric spaces and applications, Journal of Linear and Topological Algebra, 9 (2020), 253–266.
    [13] S. Matthews, Partial metric topology, Ann. NY. Acad. Sci., 728 (1994), 183–197. http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [14] A. Mutlu, U. Gurdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. http://dx.doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05
    [15] A. Mutlu, K. Ozkan, U. Gurdal, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 379–388.
    [16] A. Mutlu, K. Ozkan, U. Gurdal, Coupled fixed point theorems on bipolar metric spaces, Eur. J. Pure Appl. Math., 10 (2017), 655–667.
    [17] J. Paul, U. Gairola, Fixed point for generalized rational type contraction in partially ordered metric spaces, Jñānābha, 52 (2022), 162–166. http://dx.doi.org/10.58250/Jnanabha.2022.52121 doi: 10.58250/Jnanabha.2022.52121
    [18] J. Paul, U. Gairola, Existence of fixed point for rational type contraction in F-metric space, Ganita, 72 (2022), 369–374.
    [19] J. Paul, U. Gairola, Fixed point theorem in partially ordered metric spaces for generalized weak contraction mapping satisfying rational type expression, J. Adv. Math. Stud., 16 (2023), 57–65.
    [20] B. Rao, G. Kishore, G. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, IJMTT, 63 (2018), 25–34. http://dx.doi.org/10.14445/22315373/IJMTT-V63P504 doi: 10.14445/22315373/IJMTT-V63P504
    [21] S. Rawat, R. Dimri, A. Bartwal, F-bipolar metric spaces and fixed point theorems with applications, J. Math. Comput. Sci., 26 (2022), 184–195. http://dx.doi.org/10.22436/jmcs.026.02.08 doi: 10.22436/jmcs.026.02.08
    [22] S. Shukla, Partial rectangular metric spaces and fixed point theorems, Sci. World J., 2014 (2014), 756298. http://dx.doi.org/10.1155/2014/756298 doi: 10.1155/2014/756298
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(974) PDF downloads(61) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog