Chen (1993) developed the theory of $ \delta $-invariants to establish novel necessary conditions for a Riemannian manifold to allow a minimal isometric immersion into Euclidean space. Later, Siddiqui et al. (2024) derived optimal inequalities involving the CR $ \delta $-invariant for a generic statistical submanifold in a holomorphic statistical manifold of constant holomorphic sectional curvature. In this work, we extend the study of such optimal inequality to the contact CR $ \delta $-invariant on contact CR-submanifolds in Sasakian statistical manifolds of constant $ \phi $-sectional curvature. This paper concludes with a summary and final remarks.
Citation: Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan. Contact CR $ \delta $-invariant: an optimal estimate for Sasakian statistical manifolds[J]. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416
Chen (1993) developed the theory of $ \delta $-invariants to establish novel necessary conditions for a Riemannian manifold to allow a minimal isometric immersion into Euclidean space. Later, Siddiqui et al. (2024) derived optimal inequalities involving the CR $ \delta $-invariant for a generic statistical submanifold in a holomorphic statistical manifold of constant holomorphic sectional curvature. In this work, we extend the study of such optimal inequality to the contact CR $ \delta $-invariant on contact CR-submanifolds in Sasakian statistical manifolds of constant $ \phi $-sectional curvature. This paper concludes with a summary and final remarks.
[1] | S. Amari, H. Nagaoka, Methods of information geometry, New York: American Mathematical Society, 2000. |
[2] | F. Al-Solamy, B. Y. Chen, S. Deshmukh, Two optimal inequalities for antiholomorphic submanifolds and their applications, Taiwanese J. Math., 18 (2014), 199–217. http://doi.org/10.11650/tjm.18.2014.3241 doi: 10.11650/tjm.18.2014.3241 |
[3] | F. Al-Solamy, B.-Y. Chen, S. Deshmukh, Erratum to: two optimal inequalities for anti-holomorphic submanifolds and their applications, Taiwanese J. Math., 22 (2018), 615–616. https://doi.org/10.11650/tjm/180405 doi: 10.11650/tjm/180405 |
[4] | B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60 (1993), 568–578. |
[5] | B.-Y. Chen, An optimal inequality for CR-warped products in complex space forms involving CR $\delta$-invariant, Int. J. Math., 23 (2012), 1250045. https://doi.org/10.1142/S0129167X12500450 doi: 10.1142/S0129167X12500450 |
[6] | B.-Y. Chen, A tour through $\delta$-invariants: From Nash embedding theorem to ideal immersions, best ways of living and beyond, preprint papaer, 2013. https://doi.org/10.48550/arXiv.1307.1030 |
[7] | B.-Y. Chen, Pseudo-riemannian geometry, $\delta$-invariants and applications, Hackensack: World Scientific Publication, 2011. |
[8] | H. Furuhata, Sasakian statistical manifolds Ⅱ, In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science, Springer, 10589 (2017), 179–185. |
[9] | H. Furuhata, I. Hasegawa, Submanifold Theory in Holomorphic Statistical Manifolds. In: Dragomir, S., Shahid, M., Al-Solamy, F. (eds) Geometry of Cauchy-Riemann Submanifolds, Singapore: Springer, 2016. |
[10] | H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys., 1117 (2017), 179–186. https://doi.org/10.1016/j.geomphys.2017.03.010 doi: 10.1016/j.geomphys.2017.03.010 |
[11] | H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, Kenmotsu statistical manifolds and warped product, J. Geom., 108 (2017), 1175–1191. https://doi.org/10.1007/s00022-017-0403-1 doi: 10.1007/s00022-017-0403-1 |
[12] | H. Furuhata, I. Hasegawa, N. Satoh, Chen invariants and statistical submanifolds, Commun. Korean Math. Soc., 37 (2022), 851–864. https://doi.org/10.4134/CKMS.c210185 doi: 10.4134/CKMS.c210185 |
[13] | S. Kazan, A. Kazan, Sasakian statistical manifolds with semi-symmetric metric connection, Uni. J. Math. Appl., 1 (2018), 226–232. https://doi.org/10.32323/ujma.439013 doi: 10.32323/ujma.439013 |
[14] | C. W. Lee, J. W. Lee, Inequalities on Sasakian statistical manifolds in terms of Casorati curvatures, Mathematics, 6 (2018), 259. https://doi.org/10.3390/math6110259 doi: 10.3390/math6110259 |
[15] | I. Mihai, I. Presura, An inequality for contact CR-submanifolds in Sasakian space forms, J. Geom., 34 (2018), 109. https://doi.org/10.1007/s00022-018-0440-4 doi: 10.1007/s00022-018-0440-4 |
[16] | C. D. Neacsu, Mixed 3-Sasakian statistical manifolds and statistical submersions, In: Rovenski, V., Walczak, P., Wolak, R. (eds) Differential Geometric Structures and Applications. IWDG 2023. Springer, 440 (2024). |
[17] | M. Noguchi, Geometry of statistical manifolds, Diff. Geom. Appl., 2 (1992), 197–222. https://doi.org/10.1016/0926-2245(92)90011-B doi: 10.1016/0926-2245(92)90011-B |
[18] | V. Rani, J. Kaur, On Contact CR-Product of Sasakian statistical manifold, preprint paper, 2023. https://doi.org/10.48550/arXiv.2305.19790 |
[19] | A. N. Siddiqui, A. Ali, A. H. Alkhaldi, Chen optimal inequalities of CR-warped products of generalized Sasakian space form, J. Taibah Univ. Sci., 14 (2020), 322–330. https://doi.org/10.1080/16583655.2020.1738704 doi: 10.1080/16583655.2020.1738704 |
[20] | A. N. Siddiqui, A. H. Alkhaldi, M. H. Shahid, Geometric inequalities for CR $\delta$-invariant on generic statistical submanifolds, Filomat, 38 (2024), 1343–1355. https://doi.org/10.2298/FIL2404343S doi: 10.2298/FIL2404343S |
[21] | S. Uddin, E. Peyghan, L. Nourmohammadifar, R. Bossly, On nearly Sasakian and nearly Kähler statistical manifolds, Mathematics, 11 (2023), 2644. https://doi.org/10.3390/math11122644 doi: 10.3390/math11122644 |
[22] | P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann. Inst. Stat. Math., 41 (1989), 429–450. https://doi.org/10.1007/BF00050660 doi: 10.1007/BF00050660 |
[23] | K. Yano, M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J., 3 (1980), 163–196. https://doi.org/10.2996/kmj/1138036191 doi: 10.2996/kmj/1138036191 |
[24] | K. Yano, M. Kon, Structures on manifolds, Singapore: World Scientific, 1984. |