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1. Introduction

The study of statistical manifolds lies at the intersection of differential geometry and information
theory (see [1,17]), where the geometry of parameter spaces of statistical models is examined through
the lens of Riemannian and affine geometry. These manifolds, equipped with structures such as the
Fisher information metric and connections, provide a rich framework for understanding various aspects
of statistical inference and information processing. The significance of statistical manifolds extends
to numerous applications, including machine learning, information theory, and theoretical physics,
making them an essential topic of study in modern mathematics. The exponential family is a class
of probability distributions that is commonly used in statistics and information theory. This family
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provides a rich example of a statistical manifold that can help illustrate the key concepts of Riemannian
metrics and affine connections.

Sasakian geometry [24] has emerged as a fundamental area in differential geometry, characterized
by its deep connections to Kähler and contact geometry. Sasakian manifolds are contact metric
manifolds that exhibit a rich structure, allowing them to be seen as odd-dimensional counterparts to
Kähler manifolds. These manifolds find applications in diverse areas, such as string theory, CR
geometry, and even in the study of certain types of foliations. Furuhata et al. introduced the statistical
counterpart of Sasakian manifolds in [8, 10]. They continued their study in [11], examining Sasakian
statistical manifolds from the perspective of warped products within statistical geometry, and also
explored the concept of invariant submanifolds in the same ambient space. Kazan et al. [13]
investigated Sasakian statistical manifolds with semi-symmetric metric connections, providing
examples to support their findings. Lee et al. [14] established optimal inequalities for submanifolds in
the same ambient space, expressed in terms of Casorati curvatures with a pair of affine connection and
its conjugate affine connection. Uddin et al. [21] introduced the concept of nearly Sasakian statistical
structures, presenting a non-trivial example and discussing different classes of submanifolds,
including invariant and anti-invariant, within these manifolds. More recently, a new notion of
mixed 3-Sasakian statistical manifolds was investigated in [16].

In [5], Chen introduced the CR δ-invariant for CR-submanifolds of Kähler manifolds and
established a sharp inequality involving this invariant for anti-holomorphic warped product
submanifolds in complex space forms. Drawing inspiration from this research, Al-Solamy et al. [2, 3]
gave an optimal inequality for this invariant specifically for anti-holomorphic submanifolds in
complex space forms. This inequality was extended by proving an optimal inequality for the contact
CR δ-invariant on contact CR-submanifolds in Sasakian space forms [15]. Siddiqui et al. [19]
developed equivalent inequalities for this invariant in the context of a generic submanifold in
trans-Sasakian generalized Sasakian space forms. More recently, Siddiqui et al. [20] gave two optimal
inequalities involving the CR δ-invariant for generic statistical submanifolds in holomorphic
statistical manifolds of constant holomorphic sectional curvature.

Building on the aforementioned findings, this paper explores the generic submanifolds in a Sasakian
statistical manifold. We then derive an optimal inequality for the contact CR δ-invariant on contact CR-
submanifolds in a Sasakian statistical manifold of constant ϕ-sectional curvature.

2. Preliminaries

Definition 2.1. Let (M,G) be a Riemannian manifold, where G is a Riemannian metric. A pair (D̃,G)
is called a statistical structure on M if

(1) D̃ is of torsion-free, and
(2) The Codazzi equation: (D̃XG)(Y,Z) = (D̃YG)(X,Z) holds for any X,Y,Z ∈ Γ(T M).

Here D̃ is an affine connection on M. A manifold equipped with such a statistical structure is referred
to as a statistical manifold.

For an affine connection D̃ on (M,G), the dual connection D̃∗ of D̃ with respect to G is defined by
the formula

XG(Y,Z) = G(D̃XY,Z) +G(Y, D̃∗XZ).
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We denote D̃0 as the Levi-Civita connection of G, which satisfies the relation: 2D̃0 = D̃ + D̃∗.
Given a statistical structure (D̃,G) on M, the statistical curvature tensor field R̃ ∈ Γ(T M(1,3)) is

defined as

R̃ =
1
2

[R̃ + R̃∗].

For a point q ∈ M and a planeL = X∧Y spanned by orthonormal vectors X,Y ∈ TqM, the statistical
sectional curvature S̃ D̃,D̃∗ of (M, D̃,G) for X ∧ Y is defined as

S̃ D̃,D̃∗(X ∧ Y) = G(R̃(X,Y)Y, X).

For two statistical manifolds (N,D, g) and (M, D̃,G), an immersion h : N → M, h is called a
statistical immersion if the statistical structure induced by h from (D̃,G) coincides with (D, g).

For any X,Y ∈ Γ(T N), the corresponding Gauss formulas [22] are

D̃XY = DXY + B(X,Y),
D̃∗XY = D∗XY + B∗(X,Y),

where B and B∗ are symmetric and bilinear, called the imbedding curvature tensors of N in M for D̃
and D, respectively. Next, we have the linear transformations A and A∗ defined by

g(AV X,Y) = G(B∗(X,Y),V),
g(A∗V X,Y) = G(B(X,Y),V),

for any V ∈ Γ(T N⊥). Further, in [22] the corresponding Weingarten formulas are as follows:

D̃XV = D⊥XV − AV X,

D̃∗XV = D∗⊥XV − A∗V X,

where the connections D⊥ and D∗⊥ are Riemannian dual connections with respect to the induced metric
on Γ(T N⊥).

The mean curvature vector field of a r-dimensional statistical submanifold (N,D, g) in any statistical
manifold (M, D̃,G) with respect to both affine connections is as follows:

H =
1
r

traceG(B), H∗ =
1
r

traceG(B∗).

We respectively symbolize the Riemannian curvature tensors of D̃ (respectively, D̃∗) and D
(respectively, D∗) by R̃ (respectively, R̃∗) and R (respectively, R∗). Then, the corresponding Gauss
equations for conjugate affine connection are given by [22]

R̃X,Y,Z,W = RX,Y,Z,W +G(B(X,Z), B∗(YW)) −G(B∗(X,W), B(Y,Z)), (2.1)
R̃∗X,Y,Z,W = R∗X,Y,Z,W +G(B∗(X,Z), B(YW)) −G(B(X,W), B∗(Y,Z)), (2.2)

where R̃X,Y,Z,W = G(R̃(X,Y)Z,W) and R̃∗X,Y,Z,W = G(R̃∗(X,Y)Z,W). Thus, we have the Gauss formula
for both affine connections:

2R̃X,Y,Z,W = 2RX,Y,Z,W +G(B(X,Z), B∗(Y,W)) −G(B∗(X,W), B(Y,Z))
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+G(B∗(X,Z), B(Y,W)) −G(B(X,W), B∗(Y,Z)), (2.3)

where 2R = R + R∗.
The Codazzi equation for both affine connections:

2R̃X,Y,Z,V = G(((D̃X B)(Y,Z)),V) −G((D̃Y B)(X,Z),V)
+G((D̃∗X B∗)(Y,Z),V) −G((D̃∗Y B∗)(X,Z),V). (2.4)

Definition 2.2. A quadruplet (D̃,G, ϕ, ξ) is called a Sasakian statistical structure on M if the following
formula holds:

KXϕY = −ϕKXY,

where KXY = D̃XY − D̃0
XY satisfies KXY = KY X and G(KXY,Z) = G(Y,KXZ).

Theorem 2.3. Let (D̃,G) be a statistical structure and (G, ϕ, ξ) an almost contact metric structure on
M. Then (D̃,G, ϕ, ξ) is a Sasakian statistical structure on M if and only if

D̃X(ϕY) − ϕD̃∗XY = G(ξ,Y)X −G(X,Y)ξ
D̃Xξ = ϕX +G(D̃Xξ, ξ)ξ.

Let (M, D̃,G, ϕ, ξ) be a Sasakian statistical manifold, and c ∈ R. The Sasakian statistical structure
is said to be of constant ϕ-sectional curvature c if

R̃(X,Y)Z =
c + 3

4
{G(Y,Z)X −G(X,Z)Y} +

c − 1
4
{G(ϕY,Z)ϕX

−G(ϕX,Z)ϕY − 2G(ϕX,Y)ϕZ −G(Y, ξ)G(Z, ξ)X
+G(X, ξ)G(Z, ξ)Y +G(Y, ξ)G(Z, X)ξ −G(X, ξ)G(Z,Y)ξ},

holds for X,Y,Z ∈ Γ(T M).

Definition 2.4. Let (N,D, g) be a statistical manifold in a Sasakian statistical manifold (M, D̃,G, ϕ, ξ).
For X,Y ∈ Γ(T N).

(1) N is said to be doubly totally contact umbilical, if

B(X,Y) =
[
g(X,Y) − η(X)η(Y)

]
V⊥ + η(X)B(Y, ξ) + η(Y)B(X, ξ),

and

B∗(X,Y) =
[
g(X,Y) − η(X)η(Y)

]
V⊥ + η(X)B∗(Y, ξ) + η(Y)B∗(X, ξ),

where V⊥ represents any vector field normal to N.
(2) N is said to be doubly totally contact geodesic if V⊥ = 0, that is,

B(X,Y) = η(X)B(Y, ξ) + η(Y)B(X, ξ),

and

B∗(X,Y) = η(X)B∗(Y, ξ) + η(Y)B∗(X, ξ).
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Definition 2.5. A statistical submanifold (N,D, g) in a Sasakian statistical manifold (M, D̃,G, ϕ, ξ) is
called a generic statistical submanifold (or simply generic submanifold) in M if

(1) ϕTqN⊥ ⊂ TqN, q ∈ N, and
(2) ξ is tangent to N.

The tangent space TqN at any point q ∈ N is decomposed as

TqN = HqN ⊕ ϕTqN⊥,

whereHqN denotes the orthogonal complement of ϕTqN⊥. Consequently, we have

ϕHqN = HqN\{ξ}.

3. On generic statistical submanifolds

Lemma 3.1. Let (N,D, g) be a generic submanifold in a Sasakian statistical manifold (M, D̃,G, ϕ, ξ).
Then we have

AFYZ = AFZY, A∗FYZ = A∗FZY,

for Y,Z ∈ Γ(ϕT N⊥).

Proof. For X,Y ∈ Γ(T N), we know

D̃XϕY − ϕD̃∗XY = η(Y)X − g(X,Y)ξ.

Since ϕX = PX + FX

DXPY + B(X,PY) + D⊥XFY − AFY X − ϕD∗XY − ϕB∗(X,Y) = η(Y)X − g(X,Y)ξ.

DXPY + B(X,PY) + D⊥XFY − AFY X − PD∗XY − FD∗XY − ϕB∗(X,Y) = η(Y)X − g(X,Y)ξ.

In comparison, we have

ϕB∗(X,Y) = DXPY − PD∗XY − AFY X − η(Y)X + g(X,Y)ξ,

and

B(X,PY) = −D⊥XFY + FD∗XY.

In particular, for Y,Z ∈ Γ(ϕT N⊥)

G(ϕB∗(X,Y),Z) = g(DXPY,Z) − g(PD∗XY,Z) − g(AFY X,Z) − η(Y)g(X,Z) + η(Z)g(X,Y).

We notice that PϕTqN⊥ = 0 and ϕPTqN ⊂ HqN. So, we have

G(ϕB∗(X,Y),Z) = −g(AFY X,Z),

which can be reduced further as

g(AFZY, X) = g(X, AFYZ),

that is, AFYZ = AFZY . Similarly, one can show that A∗FYZ = A∗FZY . □
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Lemma 3.1 implies the following result:

Proposition 3.2. Let (N,D, g) be a generic submanifold in a Sasakian statistical manifold
(M, D̃,G, ϕ, ξ) of codimension greater than 1. If N is doubly totally contact umbilical, then N is
doubly totally contact geodesic.

Proposition 3.3. Let (M(c), D̃,G, ϕ, ξ) be a (2s + 1)-dimensional Sasakian statistical manifold of
constant ϕ-sectional curvature c and (N,D, g) be an (r + 1)-dimensional generic submanifold in M(c),
with r > s and r ≥ 3. If N is of codimension greater than 1 and totally contact umbilical, then c = −3.

Proof. When M is not a statistical hypersurface, that is, N is of codimension greater than or equal to 2,
then Proposition 3.2 implies that B and B∗ of N are of the following form:

B(Y,Z) = g(Y, ξ)FZ + g(Z, ξ)FY, B∗(Y,Z) = g(Y, ξ)FZ + g(Z, ξ)FY.

The covariant derivatives of B and B∗ are defined as

(D̃X B)(Y,Z) = D⊥X(B(Y,Z)) − B(DXY,Z) − B(Y,DXZ)
= g(Y,D∗Xξ)FZ + g(Z,D∗Xξ)FY + g(Y, ξ)D⊥XFZ

+g(Z, ξ)D⊥XFY − g(Z, ξ)FDXY − g(Y,Z)FDXZ,

and

(D̃∗X B∗)(Y,Z) = D∗X(B∗(Y,Z)) − B∗(D∗XY,Z) − B∗(Y,D∗XZ)
= g(Y,DXξ)FZ + g(Z,DXξ)FY + g(Y, ξ)D∗⊥XFZ

+g(Z, ξ)D∗⊥XFY − g(Z, ξ)FD∗XY − g(Y,Z)FD∗XZ.

So, we derive

(D̃X B)(Y,Z) = g(Y,PX)FZ + g(Z,PX)FY + g(D∗Xξ, ξ)g(Y, ξ)FZ + g(D∗Xξ, ξ)g(Z, ξ)FY,

(D̃Y B)(X,Z) = g(X,PY)FZ + g(Z,PY)FX + g(D∗Yξ, ξ)g(X, ξ)FZ + g(D∗Yξ, ξ)g(Z, ξ)FX,

(D̃∗X B∗)(Y,Z) = g(Y,PX)FZ + g(Z,PX)FY + g(DXξ, ξ)g(Y, ξ)FZ + g(DXξ, ξ)g(Z, ξ)FY,

and

(D̃∗Y B∗)(X,Z) = g(X,PY)FZ + g(Z,PY)FX + g(DYξ, ξ)g(X, ξ)FZ + g(DYξ, ξ)g(Z, ξ)FX.

Further, we use these expressions in the Codazzi equation (2.4) as

2R̃X,Y,Z,V = G(((D̃X B)(Y,Z)),V) −G((D̃Y B)(X,Z),V)
+G((D̃∗X B∗)(Y,Z),V) −G((D̃∗Y B∗)(X,Z),V)
c − 1

4

[
g(PY,Z)FX − g(PX,Z)FY − 2g(PX,Y)FZ

]
= 2g(Y,PX)FZ + g(Z,PX)FY − g(Z,PY)FX
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+g(Y, ξ)
[
g(DXξ, ξ) + g(D∗Xξ, ξ)

]
+ g(X, ξ)

[
g(DYξ, ξ) + g(D∗Yξ, ξ)

]
.

From which we arrive at

c + 3
4

[
− g(PY,Z)FX + g(PX,Z)FY + 2g(PX,Y)FZ

]
+g(Y, ξ)

[
g(DXξ, ξ) + g(D∗Xξ, ξ)

]
+ g(X, ξ)

[
g(DYξ, ξ) + g(D∗Yξ, ξ)

]
= 0.

For Y ∈ HqN, we put Z = PY . Then FY = 0 and FPY = 0. Thus, we conclude that c = −3. □

4. A geometric inequality

Following the analogy of Chen’s CR δ-invariant, Mihai et al. [15] defined the contact CR
δ-invariant for an odd-dimensional contact CR-submanifold in a Sasakian space form. Here, we
define the statistical Chen’s CR δ-invariant on a (r + 1)-dimensional contact CR-submanifold (N,D, g)
in the (2s + 1)-dimensional Sasakian statistical manifold (M(c), D̃,G, ϕ, ξ) of constant ϕ-sectional
curvature c as follows:

δD,D∗(D)(q) = scalD,D∗(q) − scalD,D∗(Dq),

where scalD,D∗ and scalD,D∗(D) denote the scalar curvature of N and the scalar curvature of the invariant
distributionD ⊂ T N, respectively.

Orthonormal frames on differentiable manifolds provide a powerful tool for simplifying complex
geometric and physical problems. They offer a structured way to understand local properties of the
manifold (metric tensors), aid in defining connections and curvature, and play a crucial role in both
theoretical and applied contexts like Riemannian and Lorentzian geometry. If dim(D) = 2α + 1 and
dim(D⊥) = β and let {v0 = ξ, v1, v2, · · · , vr} be an orthonormal frame on N such that {v0, v1, · · · , v2α}

are tangent toD and {v2α+1, · · · , vβ} are tangent toD⊥. Then the partial mean curvature vectors H1 and
H2 (respectively, H1∗ and H2∗ for both affine connections) of N are given by

H1 =
1

2α + 1

2α∑
I=0

B(vI , vI), H2 =
1
β

2α+β∑
a=2α+1

B(va, va),

H1∗ =
1

2α + 1

2α∑
I=0

B(vI , vI), H2∗ =
1
β

2α+β∑
a=2α+1

B(va, va).

A contact CR-submanifold (N,D, g) of a Sasakian manifold (M, D̃,G, ϕ, ξ) is said to be doubly
minimal if H = H∗ = 0. Likewise, it is referred to as doubly D-minimal or doubly D⊥-minimal if
H1 = H1∗ = 0 or H2 = H2∗ = 0, respectively.

According to the definition of the contact CR δ-invariant, we have

δD,D∗(D) =
2α+β∑

a=2α+1

S D,D∗(ξ, va) +
2α∑
I=1

2α+β∑
a=2α+1

S D,D∗(vI , va)

+
1
2

∑
2α+1≤a,b≤2α+β

S D,D∗(va, vb)
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=

(c + 3
4

)( 2α+β∑
a=2α+1

g(va, va)
)
−

(c − 1
4

)( 2α+β∑
a=2α+1

g(va, va)
)

+
β(4α + β − 1)

2

(c + 3
4

)
+

2α∑
I=1

2α+β∑
a=2α+1

[G(B(vI , vI), B∗(va, va)) −G(B(vI , va), B∗(vI , va))]

+

2α∑
I=1

2α+β∑
a=2α+1

[G(B∗(vI , vI), B(va, va)) −G(B∗(vI , va), B(vI , va))]

+
1
2

2α+β∑
a,b=2α+1

[G(B(va, va), B∗(vb, vb)) −G(B(va, vb), B∗(va, vb))]

+
1
2

2α+β∑
a,b=2α+1

[G(B∗(va, va), B(vb, vb)) −G(B∗(va, vb), B(va, vb))].

We use B∗(X, ξ) = B(X, ξ) = 0 and obtain

δD,D∗(D) = β
(
1 +

(4α + β − 1)(c + 3)
8

)
+

2α∑
I=1

2α+β∑
a=2α+1

[G(B(vI , vI), B∗(va, va)) −G(B(vI , va), B∗(vI , va))]

+

2α∑
I=1

2α+β∑
a=2α+1

[G(B∗(vI , vI), B(va, va)) −G(B∗(vI , va), B(vI , va))]

+
1
2

2α+β∑
a,b=2α+1

[G(B(va, va), B∗(vb, vb)) −G(B(va, vb), B∗(va, vb))]

+
1
2

2α+β∑
a,b=2α+1

[G(B∗(va, va), B(vb, vb)) −G(B∗(va, vb), B(va, vb))].

Given that 2B0 = B + B∗, we deduce

4H02 = H2 + H∗2 + 2G(H,H∗)

and
4B02
D⊥
= B2

D⊥
+ B∗2

D⊥
+ 2G(BD⊥ , B∗D⊥).

So, we have

δD,D∗(D) = β
(
1 +

(4α + β − 1)(c + 3)
8

)
+4

2α∑
I=1

2α+β∑
a=2α+1

[G(B0(vI , vI), B0(va, va)) −G(B0(vI , va), B0(vI , va))]
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−

2α∑
I=1

2α+β∑
a=2α+1

[G(B(vI , vI), B(va, va)) −G(B(vI , va), B(vI , va))]

−

2α∑
I=1

2α+β∑
a=2α+1

[G(B∗(vI , vI), B∗(va, va)) −G(B∗(vI , va), B∗(vI , va))]

+2
2α+β∑

a,b=2α+1

[G(B0(va, va), B0(vb, vb)) −G(B0(va, vb), B0(va, vb))]

−
1
2

2α+β∑
a,b=2α+1

[G(B(va, va), B(vb, vb)) −G(B(va, vb), B(va, vb))]

−
1
2

2α+β∑
a,b=2α+1

[G(B∗(va, va), B∗(vb, vb)) −G(B∗(va, vb), B∗(va, vb))].

From [15], we have

4
[ 2α∑

I=1

2α+β∑
a=2α+1

G(B0(vI , vI), B0(va, va)) +
1
2

2α+β∑
a,b=2α+1

G(B0(va, va), B0(vb, vb))

−
1
2

G(B0(va, vb), B0(va, vb))
]

= 2(2α + β + 1)2H02 − 2(2α + 1)2H102 − 2B02
D⊥
.

Similarly, we have

−

[ 2α∑
I=1

2α+β∑
a=2α+1

G(B(vI , vI), B(va, va)) +
1
2

2α+β∑
a,b=2α+1

G(B(va, va), B(vb, vb))

−
1
2

G(B(va, vb), B(va, vb))
]

= −
(2α + β + 1)2

2
H2 +

(2α + 1)2

2
H12 +

1
2

B2
D⊥
,

and

−

[ 2α∑
I=1

2α+β∑
a=2α+1

G(B∗(vI , vI), B∗(va, va)) +
1
2

2α+β∑
a,b=2α+1

G(B∗(va, va), B∗(vb, vb))

−
1
2

G(B∗(va, vb), B∗(va, vb))
]

= −
(2α + β + 1)2

2
H∗2 +

(2α + 1)2

2
H1∗2 +

1
2

B∗2
D⊥
.

So, we derive
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δD,D∗(D) = β
(
1 +

(4α + β − 1)(c + 3)
8

)
+2(2α + β + 1)2H02 −

(2α + β + 1)2

2
(H2 + H∗2)

−2(2α + 1)2H102 +
(2α + 1)2

2
(H12 + H1∗2)

−2B02
D⊥
+

1
2

(B2
D⊥
+ B∗2

D⊥
)

−

2α∑
I=1

2α+β∑
a=2α+1

[4B02
Ia − B2

Ia − B∗2
Ia].

In the final equation, we use the following inequalities for both affine connections (analogous to those
obtained for the Levi-Civita connection in [15]):

B2
D⊥
≥

3β2

β + 2
H22, B∗2

D⊥
≥

3β2

β + 2
H2∗2

with equality holds if and only if the following conditions are met:

(1) Ba
aa = 3Ba

bb and B∗a
aa = 3B∗a

bb, for 2α + 1 ≤ a , b ≤ 2α + β;
(2) Ba

bc = 0 and B∗a
bc = 0 for a, b, c ∈ {2α + 1, · · · , 2α + β}, a , b , c.

Thus, we find that

δD,D∗(D) ≥ β
(
1 +

(4α + β − 1)(c + 3)
8

)
+2(2α + β + 1)2H02 −

(2α + β + 1)2

2
(H2 + H∗2

−2(2α + 1)2H102 +
(2α + 1)2

2
(H12 + H1∗2)

−2B02
D⊥
+

3β2

2(β + 2)
(H22 + H2∗2)

−

2α∑
I=1

2α+β∑
a=2α+1

[4B02
Ia − B2

Ia − B∗2
Ia]. (4.1)

By drawing on the analogy with [3] and Lemma 3.1, we obtain the following inequalities:

2α∑
I=1

2α+β∑
a=2α+1

(B2
Ia + B∗2

Ia) +
(2α + 1)2

2
(H12 + H1∗2) +

3β2

4(β + 2)
(H22 + H2∗2)

≥
3β2

4(β + 2)
(H22 + H2∗2). (4.2)

AIMS Mathematics Volume 9, Issue 10, 29220–29234.
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By substituting (4.2) into (4.1), we obtain

δD,D∗(D) − β
(
1 +

(4α + β − 1)(c + 3)
8

)
−2(2α + β + 1)2H02 + 2(2α + 1)2H102 + 2B02

D⊥

+4
2α∑
I=1

2α+β∑
a=2α+1

B02
Ia

≥
(2α + 1)2

2
(H12 + H1∗2) −

(2α + β + 1)2

2
(H2 + H∗2)

+
3β2

2(β + 2)
(H22 + H2∗2) +

2α∑
I=1

2α+β∑
a=2α+1

(B2
Ia − B∗2

Ia)

≥
3β2

2(β + 2)
(H22 + H2∗2) −

(2α + β + 1)2

2
(H2 + H∗2). (4.3)

On the other hand, we have the following relation for the contact CR δ-invariant δ0(D) of N with
respect to Levi-Civita connection, given by [15]

δ0(D) =
(2α + β + 1)2

2
H02 + β

(
1 + (4α + β − 1)

)c + 3
8

−
(2α + 1)2

2
H102 −

2α∑
I=1

2α+β∑
a=2α+1

B02(vI , va) −
1
2

B02
D⊥
. (4.4)

Putting (4.4) into (4.3), we obtain

δD,D∗(D) + 3β
(
1 +

(4α + β − 1)(c + 3)
8

)
− 4δ0(D)

≥
3β2

2(β + 2)
(H22 + H2∗2) −

(2α + β + 1)2

2
(H2 + H∗2).

Hence, we have:

Theorem 4.1. Let (M(c), D̃,G, ϕ, ξ) be a (2s+1)-dimensional Sasakian statistical manifold of constant
ϕ-sectional curvature c and (N,D, g) be a (r + 1)-dimensional generic submanifold in M(c), with
dim(D) = 2α + 1 and dim(D⊥) = β. Then

δD,D∗(D) ≥ 4δ0(D) − 3β
(
1 +

(4α + β − 1)(c + 3)
8

)
+

3β2

2(β + 2)
(H22 + H2∗2) −

(r + 1)2

2
(H2 + H∗2). (4.5)

Furthermore, the equality in (4.5) holds identically if and only if the following conditions are met:

(1) N is doublyD-minimal,
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(2) N is mixed totally geodesic with respect to both affine connections, and
(3) there exists an orthonormal frame {v2α+1, v2α+2, · · · , v2α+β} ofD⊥ such that

(a) Ba
aa = 3Ba

bb and B∗a
aa = 3B∗a

bb, for 2α + 1 ≤ a , b ≤ 2α + β,
(b) Ba

bc = 0 and B∗a
bc = 0 for a, b, c ∈ {2α + 1, · · · , 2α + β}, a , b , c.

It is evident that the equality case of (4.3) holds identically when N is doubly D-minimal, and
mixed totally geodesic with respect to both affine connections. It is worth noting that the equality
in (4.5) holds identically if and only if the three conditions from Theorem 4.1 are met.

5. Conclusion and Remarks

(1) In the early 1990s, the renowned author B.-Y. Chen introduced the concept of δ-invariants
(see [4, 6, 7]) to address an open question concerning minimal immersions proposed by S.S.
Chern in the 1960s, as well as to explore applications of the well-known Nash embedding
theorem. Chen specifically defined the CR δ-invariant for anti-holomorphic submanifolds in
complex space forms. Building on this work, we extended this study to the statistical version of
contact CR δ-invariant.

(2) In fact, Furuhata et al. introduced a novel notion of U sectional curvature for statistical manifolds
(M, D̃,G) in [12] as follows:

S̃ U(X ∧ Y) = G(U(X,Y)Y, X)
= 2G(R̃0(X,Y)Y, X) −G(R̃(X,Y)Y, X)
= (2S̃ 0 − S̃ D̃,D̃∗)(X ∧ Y),

where R̃0 is the Riemannian curvature tensor for D̃0 on M. They also defined a corresponding δ-
invariant δU based on this new concept of U sectional curvature for statistical manifolds. It would
be of significant interest to reformulate such an optimal inequality by defining a new notion for the
(contact) CR δU-invariant for (contact) CR-submanifolds in a (respectively, Sasakian statistical
manifold) holomorphic statistical manifold.

(3) It would be of significant interest to check whether Proposition 3.3 is valid for any codimension.
We have already established its validity for codimension greater than or equal to 2. Thus, the
remaining case to consider is when N is a hypersurface, that is, of codimension 1.

(4) From [9, 18], we note that a contact CR-submanifold (N,D, g) in a Sasakian statistical manifold
(M, D̃,G, ϕ, ξ) is said to be mixed foliate with respect to D̃ (respectively, D̃∗) if N is mixed totally
geodesic with respect to D̃ (respectively, D̃∗) andD is completely integrable. Now, let us consider
a (r + 1)-dimensional generic submanifold (N,D, g) in a (2s+ 1)-dimensional Sasakian statistical
manifold (M(c), D̃,G, ϕ, ξ) of constant ϕ-sectional curvature c, where dim(D) = 2α + 1 and
dim(D⊥) = β. If N satisfies the equality case of (4.5) and D is integrable, then it follows from
Theorem 4.1 that N is mixed foliate with respect to D̃ (respectively, D̃∗).

(5) In [10], Furuhata et al. constructed Sasakian statistical structures on the (2s + 1)-dimensional
unit hypersphere S in (2s + 2)-dimensional Euclidean space R. They showed that S is a Sasakian
statistical manifold of constant statistical sectional curvature 1 and of constant ϕ-sectional
curvature c = 1 as well by setting KXY = G(X, ξ)G(Y, ξ)ξ. Building in this, we consider
N = Ss1(r1) × · · · × Ssk(rk) and an immersion N → Sm+k+1 from [23], where m = s1 + s2 + · · · + sk,
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i=1 r2

i = 1. It is straightforward to observe that N is a generic statistical submanifold of a
Sasakian statistical manifold Sm+k+1, provided that all si are odd.

(6) Let E2s+1(−3) be a Sasakian space form of constant ϕ-sectional curvature −3 with Sasakian
structure (G, ϕ, ξ) on E2s+1(−3) as:

G =


1
4(δi j + yiy j) 0 −1

4 yi

0 1
4δi j 0

1−
4 y j 0 1

4

 , ϕ =


0 δij 0
−δij 0 0
0 y j 0

 ,

ξ = (0, 0, · · · , 0, 0, 2), G(·, ξ) = (−y1, · · · ,−ys, 0, · · · , 0, 1),

where (x1, · · · , xn, y1, · · · , yn, z) denotes the cartesian coordinates. Now, we can construct a
Sasakian statistical structure on (E2s+1(−3),G, ϕ, ξ) by setting KXY = G(X, ξ)G(Y, ξ)ξ satisfies
Definition 2.2.

Further, we consider N2s = S2s−1 × E1. Then N2s is doubly totally contact umbilical submanifold of
E2s+1(−3).
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