Let $ \tau(n) $ be the Dirichlet divisor function and $ k\geqslant2 $ be a fixed integer. We give an asymptotic formula of the mean square of
$ \begin{equation*} \Delta_k(x) = \sum\limits_{n_1, \cdots, n_k\leqslant x}\tau(n_1 \cdots n_k)-x^kP_k(\log x). \end{equation*} $
Citation: Zhen Guo. On mean square of the error term of a multivariable divisor function[J]. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415
Let $ \tau(n) $ be the Dirichlet divisor function and $ k\geqslant2 $ be a fixed integer. We give an asymptotic formula of the mean square of
$ \begin{equation*} \Delta_k(x) = \sum\limits_{n_1, \cdots, n_k\leqslant x}\tau(n_1 \cdots n_k)-x^kP_k(\log x). \end{equation*} $
[1] | G. F. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. École Norm. Sup., 21 (1904), 207–267. https://doi.org/10.24033/asens.539 doi: 10.24033/asens.539 |
[2] | J. G. van der Corput, Zum teilerproblem, Math. Ann., 98 (1928), 697–716. https://doi.org/10.1007/BF01451619 |
[3] | G. Kolesnik, On the order of $\zeta ({1\over 2}+it)$ and $\Delta (R)$, Pacific J. Math., 98 (1982), 107–122. |
[4] | M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc., 87 (2003), 591–609. https://doi.org/10.1112/S0024611503014485 doi: 10.1112/S0024611503014485 |
[5] | H. Cramér, Über zwei Sätze des Herrn G. H. Hardy, Math. Z., 15 (1922), 201–210. https://doi.org/10.1007/BF01494394 doi: 10.1007/BF01494394 |
[6] | K. C. Tong, On division problems I, Acta Math. Sinica, 5 (1955), 313–324. |
[7] | E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 151–154. |
[8] | Y. K. Lau, K. M. Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Math. Proc. Cambridge Philos. Soc., 146 (2009), 277–287. https://doi.org/10.1017/S0305004108001874 doi: 10.1017/S0305004108001874 |
[9] | L. Tóth, W. Zhai, On multivariable averages of divisor functions, J. Number Theory, 192 (2018), 251–269. https://doi.org/10.1016/j.jnt.2018.04.015 doi: 10.1016/j.jnt.2018.04.015 |
[10] | A. P. Ivić, The Riemann zeta-function, Wiley-Interscience Publication, 1985. |
[11] | K. M. Tsang, Higher-power moments of $\Delta(x), \; E(t)$ and $P(x)$, Proc. London Math. Soc., 65 (1992), 65–84. https://doi.org/10.1112/plms/s3-65.1.65 doi: 10.1112/plms/s3-65.1.65 |
[12] | W. Zhai, On higher-power moments of $\Delta(x)$ II, Acta Arith., 114 (2004), 35–54. https://doi.org/10.4064/aa114-1-3 doi: 10.4064/aa114-1-3 |
[13] | L. Tóth, Short proofs, generalizations, and applications of certain identities concerning multiple Dirichlet series, J. Integer Seq., 26 (2023), 15. |
[14] | R. Heyman, L. Tóth, Hyperbolic summation for functions of the GCD and LCM of several integers, Ramanujan J., 62 (2023), 273–290. https://doi.org/10.1007/s11139-022-00681-2 doi: 10.1007/s11139-022-00681-2 |