Research article Special Issues

On mean square of the error term of a multivariable divisor function

  • Received: 29 August 2024 Revised: 09 October 2024 Accepted: 10 October 2024 Published: 15 October 2024
  • MSC : 11N37

  • Let $ \tau(n) $ be the Dirichlet divisor function and $ k\geqslant2 $ be a fixed integer. We give an asymptotic formula of the mean square of

    $ \begin{equation*} \Delta_k(x) = \sum\limits_{n_1, \cdots, n_k\leqslant x}\tau(n_1 \cdots n_k)-x^kP_k(\log x). \end{equation*} $

    Citation: Zhen Guo. On mean square of the error term of a multivariable divisor function[J]. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415

    Related Papers:

  • Let $ \tau(n) $ be the Dirichlet divisor function and $ k\geqslant2 $ be a fixed integer. We give an asymptotic formula of the mean square of

    $ \begin{equation*} \Delta_k(x) = \sum\limits_{n_1, \cdots, n_k\leqslant x}\tau(n_1 \cdots n_k)-x^kP_k(\log x). \end{equation*} $



    加载中


    [1] G. F. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. École Norm. Sup., 21 (1904), 207–267. https://doi.org/10.24033/asens.539 doi: 10.24033/asens.539
    [2] J. G. van der Corput, Zum teilerproblem, Math. Ann., 98 (1928), 697–716. https://doi.org/10.1007/BF01451619
    [3] G. Kolesnik, On the order of $\zeta ({1\over 2}+it)$ and $\Delta (R)$, Pacific J. Math., 98 (1982), 107–122.
    [4] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc., 87 (2003), 591–609. https://doi.org/10.1112/S0024611503014485 doi: 10.1112/S0024611503014485
    [5] H. Cramér, Über zwei Sätze des Herrn G. H. Hardy, Math. Z., 15 (1922), 201–210. https://doi.org/10.1007/BF01494394 doi: 10.1007/BF01494394
    [6] K. C. Tong, On division problems I, Acta Math. Sinica, 5 (1955), 313–324.
    [7] E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 151–154.
    [8] Y. K. Lau, K. M. Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Math. Proc. Cambridge Philos. Soc., 146 (2009), 277–287. https://doi.org/10.1017/S0305004108001874 doi: 10.1017/S0305004108001874
    [9] L. Tóth, W. Zhai, On multivariable averages of divisor functions, J. Number Theory, 192 (2018), 251–269. https://doi.org/10.1016/j.jnt.2018.04.015 doi: 10.1016/j.jnt.2018.04.015
    [10] A. P. Ivić, The Riemann zeta-function, Wiley-Interscience Publication, 1985.
    [11] K. M. Tsang, Higher-power moments of $\Delta(x), \; E(t)$ and $P(x)$, Proc. London Math. Soc., 65 (1992), 65–84. https://doi.org/10.1112/plms/s3-65.1.65 doi: 10.1112/plms/s3-65.1.65
    [12] W. Zhai, On higher-power moments of $\Delta(x)$ II, Acta Arith., 114 (2004), 35–54. https://doi.org/10.4064/aa114-1-3 doi: 10.4064/aa114-1-3
    [13] L. Tóth, Short proofs, generalizations, and applications of certain identities concerning multiple Dirichlet series, J. Integer Seq., 26 (2023), 15.
    [14] R. Heyman, L. Tóth, Hyperbolic summation for functions of the GCD and LCM of several integers, Ramanujan J., 62 (2023), 273–290. https://doi.org/10.1007/s11139-022-00681-2 doi: 10.1007/s11139-022-00681-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(333) PDF downloads(27) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog