By combining the concept of orthogonality and the Geraghty type contraction, we give some fixed point results in the class of $ O $-metric spaces. Our obtained results extend the existing results in the literature. We also resolve an ordinary type differential equation.
Citation: S. S. Razavi, H. P. Masiha, Hüseyin Işık, Hassen Aydi, Choonkil Park. On Geraghty $ \perp $-contractions in $ O $-metric spaces and an application to an ordinary type differential equation[J]. AIMS Mathematics, 2022, 7(9): 17393-17402. doi: 10.3934/math.2022958
By combining the concept of orthogonality and the Geraghty type contraction, we give some fixed point results in the class of $ O $-metric spaces. Our obtained results extend the existing results in the literature. We also resolve an ordinary type differential equation.
[1] | A. Amini-Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., 72 (2010), 2238–2242. https://doi.org/10.1016/j.na.2009.10.023 doi: 10.1016/j.na.2009.10.023 |
[2] | H. Aydi, A. Felhi, H. Afshari, New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 780–788. http://doi.org/10.22436/jnsa.010.02.38 doi: 10.22436/jnsa.010.02.38 |
[3] | H. Aydi, E. Karapinar, P. Salimi, I. Erhan, Best proximity points of generalized almost $\psi$-Geraghty contractive non-self mappings, Fixed Point Theory Appl., 2014 (2014), 32. https://doi.org/10.1186/1687-1812-2014-32 doi: 10.1186/1687-1812-2014-32 |
[4] | M. AlShumrani, H. Aydi, S. Hazra, C. Ozel, Geraghty extension to $k$-dimension, Facta Univ. Ser. Math., 33 (2018), 197–202. https://doi.org/10.22190/FUMI1802197A doi: 10.22190/FUMI1802197A |
[5] | S. Banach, Sur les opé rations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[6] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017 |
[7] | V. Berinde, Approximating fixed points of weak $ \varphi$-contractions, Fixed Point Theor., 4 (2003), 131–142. |
[8] | J. Caballero, J. Harjani, K. Sadarangani, Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl., 2010 (2010), 916064. https://doi.org/10.1155/2010/916064 doi: 10.1155/2010/916064 |
[9] | C. R. Diminnie, A new orthogonality relation for normed linear spaces, Math. Nachr., 114 (1983), 197–203. https://doi.org/10.1002/mana.19831140115 doi: 10.1002/mana.19831140115 |
[10] | D. Dukić, Z. Kadelburg, S. Radenović, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., 2011 (2011), 192581. https://doi.org/10.1155/2011/561245 doi: 10.1155/2011/561245 |
[11] | M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. https://doi.org/10.2307/2039421 doi: 10.2307/2039421 |
[12] | M. E. Gordji, H. Baghani, G. H. Kim, Common fixed point theorems for $ (\psi, \varphi)$-weak nonlinear contraction in partially ordered sets, Fixed Point Theory Appl., 2012 (2012), 62. https://doi.org/10.1186/1687-1812-2012-62 doi: 10.1186/1687-1812-2012-62 |
[13] | M. E. Gordji, M. Ramezani, M. de la Sen, Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theor., 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45 doi: 10.24193/fpt-ro.2017.2.45 |
[14] | V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341–4349. https://doi.org/10.1016/j.na.2008.09.020 doi: 10.1016/j.na.2008.09.020 |
[15] | J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 62 (1977), 344–348. https://doi.org/10.2307/2041041 doi: 10.2307/2041041 |
[16] | S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x |
[17] | J. J. Nieto, R. Rodríguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. https://doi.org/10.1007/s11083-005-9018-5 doi: 10.1007/s11083-005-9018-5 |
[18] | A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443. http://doi.org/10.1090/S0002-9939-03-07220-4 doi: 10.1090/S0002-9939-03-07220-4 |
[19] | B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693. https://doi.org/10.1016/S0362-546X(01)00388-1 doi: 10.1016/S0362-546X(01)00388-1 |
[20] | S. S. Razavi, H. P. Masiha, Some fixed point results on new generalization of metric spaces by orthogonal property with applications for some ordinary differential equations, J. Math. Anal., 9 (2018), 29–37. |
[21] | L. A. Salazar, S. Reich, A remark on weakly contractive mappings, J. Nonlinear Convex A., 16 (2015), 767–773. |
[22] | T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861–1869. https://doi.org/10.1090/S0002-9939-07-09055-7 doi: 10.1090/S0002-9939-07-09055-7 |