The main purpose of this paper is to study the properties of $ \mathcal{PR} $-semi-invariant submanifold of para-Kenmotsu manifold. We obtain the integrability conditions for the invariant distribution and anti-invariant distribution. We obtain some existence and non-existence results of $ \mathcal{PR} $-semi-invariant warped product submanifolds. We provide some necessary and sufficient conditions for $ \mathcal{PR} $-semi-invariant submanifold to be a $ \mathcal{PR} $-semi-invariant warped product submanifold in para-Kenmotsu manifold. We also derive some sharp inequalities for $ \mathcal{PR} $-semi-invariant warped product submanifold in para-Kenmotsu manifolds.
Citation: Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali. Geometric inequalities of $ \mathcal{PR} $-warped product submanifold in para-Kenmotsu manifold[J]. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069
The main purpose of this paper is to study the properties of $ \mathcal{PR} $-semi-invariant submanifold of para-Kenmotsu manifold. We obtain the integrability conditions for the invariant distribution and anti-invariant distribution. We obtain some existence and non-existence results of $ \mathcal{PR} $-semi-invariant warped product submanifolds. We provide some necessary and sufficient conditions for $ \mathcal{PR} $-semi-invariant submanifold to be a $ \mathcal{PR} $-semi-invariant warped product submanifold in para-Kenmotsu manifold. We also derive some sharp inequalities for $ \mathcal{PR} $-semi-invariant warped product submanifold in para-Kenmotsu manifolds.
[1] | R. L. Bishop, B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1–49. https://doi.org/10.2307/1995057 doi: 10.2307/1995057 |
[2] | G. I. Kruchkovich, On motions in semi-reducible Riemann spaces, Usp. Mat. Nauk, 12 (1957), 149–156. |
[3] | B. Y. Chen, Geometry of warped product $\mathcal{CR}$-submanifolds in Kaehler manifolds, Mh. Math., 133 (2001), 177–195. https://doi.org/10.1007/s006050170019 doi: 10.1007/s006050170019 |
[4] | B. Y. Chen, Geometry of warped product $\mathcal{CR}$-submanifolds in Kaehler manifolds, II, Mh. Math., 134 (2001), 103–119. https://doi.org/10.1007/s006050170002 doi: 10.1007/s006050170002 |
[5] | I. Hasegawa, I. Mihai, Contact $\mathcal{CR}$-warped product submanifolds in Sasakian manifolds, Geom. Dedicata, 102 (2003), 143–150. https://doi.org/10.1023/B:GEOM.0000006582.29685.22 doi: 10.1023/B:GEOM.0000006582.29685.22 |
[6] | V. A. Khan, K. A. Khan, A note on warped product submanifolds of Kenmotsu manifolds, Math. Slovaca, 61 (2011), 79–92. https://doi.org/10.2478/s12175-010-0061-3 doi: 10.2478/s12175-010-0061-3 |
[7] | S. Uddin, K. A. Khan, An inequality for contact $\mathcal{CR}$-warped product submanifolds of nearly cosymplectic manifolds, J. Inequal. Appl., 2012 (2012), 1–7. https://doi.org/10.1186/1029-242X-2012-304 doi: 10.1186/1029-242X-2012-304 |
[8] | F. R. Al-Solamy, M. A. Khan, Semi-invariant warped product submanifolds of almost contact manifolds, J. Inequal. Appl., 2012 (2012), 1–12. https://doi.org/10.1186/1029-242X-2012-127 doi: 10.1186/1029-242X-2012-127 |
[9] | I. Mihai, Contact $\mathcal{CR}$-warped product submanifolds in Sasakian space forms, Geom. Dedicata, 109 (2004), 165–173. https://doi.org/10.1007/s10711-004-5459-z doi: 10.1007/s10711-004-5459-z |
[10] | S. Uddin, Geometry of warped product semi-slant submanifolds of Kenmotsu manifolds, Bull. Math. Sci., 8 (2018), 435–451. https://doi.org/10.1007/s13373-017-0106-9 doi: 10.1007/s13373-017-0106-9 |
[11] | B. Y. Chen, M. I. Munteanu, Geometry of PR-warped products in para-Keahler manifolds, Taiwanese J. Math., 16 (2012), 1293–1327. |
[12] | S. K. Srivastava, A. Sharma, Geometry of ${\mathcal {P}\mathcal {R}}$-semi-invariant warped product submanifolds in paracosymplectic manifold, J. Geom., 108 (2017), 61–74. https://doi.org/10.1007/s00022-016-0325-3 doi: 10.1007/s00022-016-0325-3 |
[13] | S. K. Srivastava, A. Sharma, Pointwise pseudo-slant warped product submanifolds in a K$\ddot{a}$hler manifold, Mediterr. J. Math., 14 (2017), 20. https://doi.org/10.1007/s00009-016-0832-3 doi: 10.1007/s00009-016-0832-3 |
[14] | M. Dhiman, A. Kumar, S. K. Srivastava, $\mathcal {PR}$-semi slant warped product submanifold of paraKenmotsu manifolds, Results Math., 77 (2022), 1–30. https://doi.org/10.1007/s00025-022-01695-4 doi: 10.1007/s00025-022-01695-4 |
[15] | S. K. Srivastava, F. Mofarreh, A. Kumar, A. Ali, Characterizations of $\mathcal {PR} $-pseudo-slant warped product submanifold of para-Kenmotsu manifold with slant base, Symmetry, 14 (2022), 1001. https://doi.org/10.3390/sym14051001 doi: 10.3390/sym14051001 |
[16] | K. Srivastava, S. K. Srivastava, On a class of $\alpha$-para Kenmotsu manifolds, Mediterr. J. Math., 13 (2016), 391–399. https://doi.org/10.1007/s00009-014-0496-9 doi: 10.1007/s00009-014-0496-9 |
[17] | S. Zamkovoy, G. Nakova, The decomposition of almost paracontact metric manifolds in eleven classes revisited, J. Geom., 109 (2018), 1–23. https://doi.org/10.1007/s00022-018-0423-5 doi: 10.1007/s00022-018-0423-5 |
[18] | J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), 20–63. https://doi.org/10.2307/1969989 doi: 10.2307/1969989 |
[19] | B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, World Scientific, 2017. |
[20] | S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann., 241 (1979), 209–215. https://doi.org/10.1007/BF01421206 doi: 10.1007/BF01421206 |