Research article

Asymptotic stability for quaternion-valued BAM neural networks via a contradictory method and two Lyapunov functionals

  • Received: 10 December 2021 Revised: 11 February 2022 Accepted: 14 February 2022 Published: 25 February 2022
  • MSC : 34K24

  • We explore the existence and asymptotic stability of equilibrium point for a class of quaternion-valued BAM neural networks with time-varying delays. Firstly, by employing Homeomorphism theorem and a contradictory method with novel analysis skills, a criterion ensuring the existence of equilibrium point of the considered quaternion-valued BAM neural networks is acquired. Secondly, by constructing two Lyapunov functionals, a criterion assuring the global asymptotic stability of equilibrium point for above discussed quaternion-valued BAM is presented. Applying a contradictory method to study the equilibrium point and applying two Lyapunov functionals to study stability of equilibrium point are completely new methods.

    Citation: Ailing Li, Mengting Lv, Yifang Yan. Asymptotic stability for quaternion-valued BAM neural networks via a contradictory method and two Lyapunov functionals[J]. AIMS Mathematics, 2022, 7(5): 8206-8223. doi: 10.3934/math.2022457

    Related Papers:

  • We explore the existence and asymptotic stability of equilibrium point for a class of quaternion-valued BAM neural networks with time-varying delays. Firstly, by employing Homeomorphism theorem and a contradictory method with novel analysis skills, a criterion ensuring the existence of equilibrium point of the considered quaternion-valued BAM neural networks is acquired. Secondly, by constructing two Lyapunov functionals, a criterion assuring the global asymptotic stability of equilibrium point for above discussed quaternion-valued BAM is presented. Applying a contradictory method to study the equilibrium point and applying two Lyapunov functionals to study stability of equilibrium point are completely new methods.



    加载中


    [1] Y. K. Li, J. L. Qin, B. Li, Anti-periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays, Neural Process. Lett., 49 (2019), 1217–1237. https://doi.org/10.1007/s11063-018-9867-8 doi: 10.1007/s11063-018-9867-8
    [2] N. N. Huo, B. Li, Y. K. Li, Existence and exponential stability of anti-periodic solutions for inertial quaternion-valued high-order Hopfield neural networks with state-dependent delays, IEEE Access, 7 (2019), 60010–60019. https://doi.org/10.1109/ACCESS.2019.2915935 doi: 10.1109/ACCESS.2019.2915935
    [3] Q. K. Song, X. F. Chen, Multistability analysis of quaternion-valued neural networks with time delays, IEEE T. Neur. Net. Lear., 29 (2018), 5430–5440. https://doi.org/10.1109/TNNLS.2018.2801297 doi: 10.1109/TNNLS.2018.2801297
    [4] X. F. Chen, Q. K. Song, Z. S. Li, Z. J. Zhao, Y. R. Liu, Stability analysis of continuous-time and discrete-time quaternion-valued neural networks with linear threshold neurons, IEEE T. Neur. Net. Lear., 29 (2018), 2769–2781. https://doi.org/10.1109/TNNLS.2017.2704286 doi: 10.1109/TNNLS.2017.2704286
    [5] X. F. Chen, Z. S. Li, Q. K. Song, J. Hu, Y. S. Tan, Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Networks, 91 (2017), 55–65. https://doi.org/10.1016/j.neunet.2017.04.006 doi: 10.1016/j.neunet.2017.04.006
    [6] R. X. Li, X. B. Gao, J. D. Cao, K. Zhang, Stability analysis of quaternion-valued Cohen-Grossberg-Grossberg neural networks, Math. Method. Appl. Sci., 42 (2019), 3721–3738. https://doi.org/10.1002/mma.5607 doi: 10.1002/mma.5607
    [7] X. J. Yang, C. D. Li, Q. K. Song, J. Y. Chen, J. J. Huang, Global mittag-leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons, Neural Networks, 105 (2018), 88–103. https://doi.org/10.1016/j.neunet.2018.04.015 doi: 10.1016/j.neunet.2018.04.015
    [8] Y. K. Li, J. L. Qin, B. Li, Periodic solutions for quaternion-valued fuzzy cellular neural networks with time-varying delays, Adv. Differ. Equ., 2019 (2019), 63. https://doi.org/10.1186/s13662-019-2008-5 doi: 10.1186/s13662-019-2008-5
    [9] J. W. Zhu, J. T. Sun, Stability of quaternion-valued neural networks with mixed delay, Neural Process Lett., 49 (2019), 819–833. https://doi.org/10.1007/s11063-018-9849-x doi: 10.1007/s11063-018-9849-x
    [10] Y. K. Li, J. L. Qin, Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays, Neurocomputing, 292 (2018), 91–103. https://doi.org/10.1016/j.neucom.2018.02.077 doi: 10.1016/j.neucom.2018.02.077
    [11] X. X. You, Q. K. Song, J. Liang, Y. R. Liu, F. E. Alsaadi, Global $\mu$-stability of quaternion-valued neural networks with mixed time-varying delays, Neurocomputing, 290 (2018), 12–25. https://doi.org/10.1016/j.neucom.2018.02.030 doi: 10.1016/j.neucom.2018.02.030
    [12] X. W. Liu, Z. G. Li, Global $\mu$-stability of quaternion-valued neural networks with unbounded and asynchronous time-varying delays, IEEE Access, 7 (2019), 9128–9141. https://doi.org/ 10.1109/ACCESS.2019.2891721 doi: 10.1109/ACCESS.2019.2891721
    [13] Z. W. Tu, Y. X. Zhao, N. Ding, Y. M. Teng, W. Zhang, Stability analysis of quaternion-valued neural networks with both discrete and distributed delays, Appl. Math. Comput., 343 (2019), 342–353. https://doi.org/10.1016/j.amc.2018.09.049 doi: 10.1016/j.amc.2018.09.049
    [14] M. C. Tan, Y. F. Liu, D. S. Xu, Multistability analysis of delayeed quaternion-valued neural networks with nonmonotonic piecewise nonlinear activation functions, Appl. Math. Comput., 341 (2019), 229–255. https://doi.org/10.1016/j.amc.2018.08.033 doi: 10.1016/j.amc.2018.08.033
    [15] R. Y. Wei, J. D. Cao, Fixed-time synchronization of quaternion-valued memristive neural networks with time delays, Neural Networks, 113 (2019), 1–10. https://doi.org/10.1016/j.neunet.2019.01.014 doi: 10.1016/j.neunet.2019.01.014
    [16] S. P. Shen, B. Li, Y. K. Li, Anti-periodic dynamics of quaternion-valued fuzzy cellular neural networks with time-varying delays on time scales, Discrete Dyn. Nat. Soc., 2018 (2018), 5290786. https://doi.org/10.1155/2018/5290786 doi: 10.1155/2018/5290786
    [17] C. A. Popa, E. Kaslik, Multistability and muitiperiodicity in impulsive hybird quaternion-valued neural networks with mixed delays, Neural Networks, 99 (2018), 1–18. https://doi.org/10.1016/j.neunet.2017.12.006 doi: 10.1016/j.neunet.2017.12.006
    [18] R. Y. Wei, J. D. Cao, Synchronization control of quaternion-valued menristive neural networks with and without event-triggered scheme, Cogn. Neyrodyn., 13 (2019), 489–502. https://doi.org/10.1007/s11571-019-09545-w doi: 10.1007/s11571-019-09545-w
    [19] H. Q. Shen, Q. K. Song, J. Liang, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Glibal exponential stability in lagrange sense for quaternion-valued neural networks with leakage delay and mixed time-varying delays, Int. J. Syst. Sci., 50 (2019), 858–870. https://doi.org/10.1080/00207721.2019.1586001 doi: 10.1080/00207721.2019.1586001
    [20] D. H. Li, Z. Q. Zhang, X. L. Zhang, Periodic solutions of discrete-time Quaternion-valued BAM neural networks, Chaos Soliton. Fract., 138 (2020), 110144. https://doi.org/10.1016/j.chaos.2020.110144 doi: 10.1016/j.chaos.2020.110144
    [21] Q. K. Song, L. Y. Long, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Stability criteria of quaternion-valued neutral-type delayed neural networks, Neurocomputing, 412 (2020), 287–294. https://doi.org/10.1016/j.neucom.2020.06.086 doi: 10.1016/j.neucom.2020.06.086
    [22] H. M. Wang, J. Tan, S. P. Wen, Exponential stability analysis of mixed delayed quaternion-valued neural networks via decomposed approach, IEEE Access, 8 (2020), 91501–91509. https://doi.org/10.1109/ACCESS.2020.2994554 doi: 10.1109/ACCESS.2020.2994554
    [23] U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, R. Samidurai, et al., Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks, Mathematics, 8 (2020), 801. https://doi.org/10.3390/math8050801 doi: 10.3390/math8050801
    [24] Z. Q. Zhang, W. B. Liu, D. M. Zhou, Global asymptotic stability to a generalized Cohen-Grossberg BAM neural networks of neutral type delays, Neural Networks, 25 (2012), 94–105. https://doi.org/10.1016/j.neunet.2011.07.006 doi: 10.1016/j.neunet.2011.07.006
    [25] Z. Q. Zhang, J. D. Cao, D. M. Zhou, Novel LMI-based conditioon on global asymptotic stability for a class of Cohen-Grossberg BAM networks with extended activation functions, IEEE T. Neur. Net. Lear., 25 (2014), 1161–1172. https://doi.org/10.1109/TNNLS.2013.2289855 doi: 10.1109/TNNLS.2013.2289855
    [26] W. L. Peng, Q. X. Wu, Z. Q. Zhang, LMI-based global exponential stability of equilibrium point for neutral delayed BAM neural networks with delays in leakage terms via new inequality technique, Neurocomputing, 199 (2016), 103–113. https://doi.org/10.1016/j.neucom.2016.03.030 doi: 10.1016/j.neucom.2016.03.030
    [27] H. L. Li, X. B. Gao, R. X. Li, Exponential stability and sampled-data synchronization of delayed complex-valued memristive neural networks, Neural Process. Lett., 51 (2020), 193–209. https://doi.org/10.1007/s11063-019-10082-0 doi: 10.1007/s11063-019-10082-0
    [28] Z. Q. Zhang, S. H. Yu, Global asymptotic stability for a class of complex-valued Cohen-Grossberg neural networks with time delays, Neurocomputing, 171 (2016), 1158–1166. https://doi.org/10.1016/j.neucom.2015.07.051 doi: 10.1016/j.neucom.2015.07.051
    [29] Z. Q. Zhang, D. L. Hao, D. M. Zhou, Global asymptotic stability by complex-valued inequalities for complex-valued neural networks with delays on periodic time scales, Neurocomputing, 219 (2017), 494–501. https://doi.org/10.1016/j.neucom.2016.09.055 doi: 10.1016/j.neucom.2016.09.055
    [30] C. J. Xu, M. X. Liao, P. L. Li, Z. X. Liu, S. Yuan, New results on pseudo almost periodic solutions of quaternion-valued fuzzy cellular neural networks with delays, Fuzzy Set. Syst., 411 (2021), 25–47. https://doi.org/10.1016/j.fss.2020.03.016 doi: 10.1016/j.fss.2020.03.016
    [31] C. J. Xu, Z. X. Liu, M. X. Liao, P. L. Li, Q. M. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation, Math. Comput. Simulat., 182 (2021), 471–494. https://doi.org/10.1016/j.matcom.2020.11.023 doi: 10.1016/j.matcom.2020.11.023
    [32] C. J. Xu, Z. X. Liu, L. Y. Yao, C. Aouit, Further exploration on bifurcation of fractional-order sixneuron bidirectional associative memory neural networks with multi-delays, Appl. Math. Comput., 410 (2021), 126458. https://doi.org/10.1016/j.amc.2021.126458 doi: 10.1016/j.amc.2021.126458
    [33] C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Q. M. Xiao, S. Yuan, Influence of multiple time delays on bifurcation of fractional-order neural networks, Appl. Math. Comput., 361 (2019), 565–582. https://doi.org/10.1016/j.amc.2019.05.057 doi: 10.1016/j.amc.2019.05.057
    [34] R. Zhao, B. X. Wang, J. G. Jian, Lagrange stability of BAM quaternion-valued inertial neural networks via auxiliary function-based integral inequalities, Neural Process. Lett., 2022. https://doi.org/10.1007/s11063-021-10685-6 doi: 10.1007/s11063-021-10685-6
    [35] J. Liu, J. G. Jian, B. X. Wang, Stability analysis for quaternion-valued BAM inertial neural networks with time delay via nonlinear measure approach, Math. Comput. Simulat., 174 (2020), 134–152. https://doi.org/10.1016/j.matcom.2020.03.002 doi: 10.1016/j.matcom.2020.03.002
    [36] C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Z. X. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cogn. Comput., 13 (2021), 322–356. https://doi.org/10.1007/s12559-020-09782-w doi: 10.1007/s12559-020-09782-w
    [37] C. J. Xu, W. Zhang, C. Aouit, Z. X. Liu, M. X. Liao, P. L. Li, Further investigation on bifurcation and their control of fractional-order bidirectional associative memory neural networks involving four neurons and multiple delays, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7581 doi: 10.1002/mma.7581
    [38] C. J. Xu, M. X. Liao, P. L. Li, S. Yuan, Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks, Chaos Soliton. Fract., 142 (2021), 110535. https://doi.org/10.1016/j.chaos.2020.110535 doi: 10.1016/j.chaos.2020.110535
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1453) PDF downloads(83) Cited by(2)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog