In this paper, we study a particular $ n\times n $ matrix $ A = [a_{k_{ij}}]^n_{i, j = 1} $ and its Hadamard inverse $ A^{\circ (-1)} $, whose entire elements are exponential form $ a_k = e(\frac{k}{n}) = e^{\frac{2\pi ik}{n}}, $ where $ k_{ij} = \min(i, j)+1 $. We study determinants, leading principal minor and inversions of $ A, $ $ A^{\circ (-1)} $. Then the defined values of Euclidean norms, $ l_p $ norms and spectral norms of these matrices are presented, rather than upper and lower bounds, which are different from other articles.
Citation: Baijuan Shi. A particular matrix with exponential form, its inversion and some norms[J]. AIMS Mathematics, 2022, 7(5): 8224-8234. doi: 10.3934/math.2022458
In this paper, we study a particular $ n\times n $ matrix $ A = [a_{k_{ij}}]^n_{i, j = 1} $ and its Hadamard inverse $ A^{\circ (-1)} $, whose entire elements are exponential form $ a_k = e(\frac{k}{n}) = e^{\frac{2\pi ik}{n}}, $ where $ k_{ij} = \min(i, j)+1 $. We study determinants, leading principal minor and inversions of $ A, $ $ A^{\circ (-1)} $. Then the defined values of Euclidean norms, $ l_p $ norms and spectral norms of these matrices are presented, rather than upper and lower bounds, which are different from other articles.
[1] | F. Zhang, Matrix theory: basic results and techniques, New York, NY: Springer, 2011. http://dx.doi.org/10.1007/978-1-4614-1099-7 |
[2] | A. Ipek, M. Akbulak, Hadamard exponential Hankel matrix, its eigenvalues and some norms, Math. Sci. Lett., 1 (2012), 81–87. http://dx.doi.org/10.12785/msl/010110 doi: 10.12785/msl/010110 |
[3] | D. Bozkurt, On the $l_p$ norms of almost Cauchy-Toeplitz matrices, Turk. J. Math., 20 (1996), 545–552. |
[4] | D. Bozkurt, On the $l_p$ norms of Cauchy-Toeplitz matrices, Linear and Multilinear Algebra, 44 (1998), 341–346. http://dx.doi.org/10.1080/03081089808818569 doi: 10.1080/03081089808818569 |
[5] | D. Bozkurt, A note on the spectral norms of the matrices connected integer numbers sequence, 2011, arXiv: 1105.1724. |
[6] | H. Civciv, R. Turmen, On the bounds for the spectral and $l_p$ norms of the Khatri-Rao products of Cauchy-Hankel matrices, J. Ineq. Pure and Appl. Math., 7 (2006), 195. |
[7] | S. Solak, M. Bahsi, A particular matrix and its some properties, Sci. Res. Essays, 8 (2013), 1–5. http://dx.doi.org/10.5897/SRE11.410 doi: 10.5897/SRE11.410 |
[8] | S. H. Jafari-Petroudi, B. Pirouz, A particular matrix, its inversion and some norms, Appl. Comput. Math., 4 (2015), 47–52. http://dx.doi.org/10.11648/j.acm.20150402.13 doi: 10.11648/j.acm.20150402.13 |
[9] | S. H. Jafari-Petroudi, M. Pirouz, On the bounds for the spectral norm of particular matrices with Fibonacci and Lucas numbers, Int. J. Adv. Appl. Math. and Mech., 3 (2016), 82–90. |