Research article

A particular matrix with exponential form, its inversion and some norms

  • Received: 24 December 2021 Revised: 14 February 2022 Accepted: 17 February 2022 Published: 25 February 2022
  • MSC : 15A15, 15A60

  • In this paper, we study a particular $ n\times n $ matrix $ A = [a_{k_{ij}}]^n_{i, j = 1} $ and its Hadamard inverse $ A^{\circ (-1)} $, whose entire elements are exponential form $ a_k = e(\frac{k}{n}) = e^{\frac{2\pi ik}{n}}, $ where $ k_{ij} = \min(i, j)+1 $. We study determinants, leading principal minor and inversions of $ A, $ $ A^{\circ (-1)} $. Then the defined values of Euclidean norms, $ l_p $ norms and spectral norms of these matrices are presented, rather than upper and lower bounds, which are different from other articles.

    Citation: Baijuan Shi. A particular matrix with exponential form, its inversion and some norms[J]. AIMS Mathematics, 2022, 7(5): 8224-8234. doi: 10.3934/math.2022458

    Related Papers:

  • In this paper, we study a particular $ n\times n $ matrix $ A = [a_{k_{ij}}]^n_{i, j = 1} $ and its Hadamard inverse $ A^{\circ (-1)} $, whose entire elements are exponential form $ a_k = e(\frac{k}{n}) = e^{\frac{2\pi ik}{n}}, $ where $ k_{ij} = \min(i, j)+1 $. We study determinants, leading principal minor and inversions of $ A, $ $ A^{\circ (-1)} $. Then the defined values of Euclidean norms, $ l_p $ norms and spectral norms of these matrices are presented, rather than upper and lower bounds, which are different from other articles.



    加载中


    [1] F. Zhang, Matrix theory: basic results and techniques, New York, NY: Springer, 2011. http://dx.doi.org/10.1007/978-1-4614-1099-7
    [2] A. Ipek, M. Akbulak, Hadamard exponential Hankel matrix, its eigenvalues and some norms, Math. Sci. Lett., 1 (2012), 81–87. http://dx.doi.org/10.12785/msl/010110 doi: 10.12785/msl/010110
    [3] D. Bozkurt, On the $l_p$ norms of almost Cauchy-Toeplitz matrices, Turk. J. Math., 20 (1996), 545–552.
    [4] D. Bozkurt, On the $l_p$ norms of Cauchy-Toeplitz matrices, Linear and Multilinear Algebra, 44 (1998), 341–346. http://dx.doi.org/10.1080/03081089808818569 doi: 10.1080/03081089808818569
    [5] D. Bozkurt, A note on the spectral norms of the matrices connected integer numbers sequence, 2011, arXiv: 1105.1724.
    [6] H. Civciv, R. Turmen, On the bounds for the spectral and $l_p$ norms of the Khatri-Rao products of Cauchy-Hankel matrices, J. Ineq. Pure and Appl. Math., 7 (2006), 195.
    [7] S. Solak, M. Bahsi, A particular matrix and its some properties, Sci. Res. Essays, 8 (2013), 1–5. http://dx.doi.org/10.5897/SRE11.410 doi: 10.5897/SRE11.410
    [8] S. H. Jafari-Petroudi, B. Pirouz, A particular matrix, its inversion and some norms, Appl. Comput. Math., 4 (2015), 47–52. http://dx.doi.org/10.11648/j.acm.20150402.13 doi: 10.11648/j.acm.20150402.13
    [9] S. H. Jafari-Petroudi, M. Pirouz, On the bounds for the spectral norm of particular matrices with Fibonacci and Lucas numbers, Int. J. Adv. Appl. Math. and Mech., 3 (2016), 82–90.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1365) PDF downloads(65) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog