Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant $ M $-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a $ B^S $-matrix. Theory analysis and numerical examples show that these upper bounds are more accurate than some existing results.
Citation: Deshu Sun. Note on error bounds for linear complementarity problems involving $ B^S $-matrices[J]. AIMS Mathematics, 2022, 7(2): 1896-1906. doi: 10.3934/math.2022109
Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant $ M $-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a $ B^S $-matrix. Theory analysis and numerical examples show that these upper bounds are more accurate than some existing results.
[1] | X. J. Chen, S. H. Xiang, Perturbation bounds of $P$-matrix linear complementarity problems, SIAM J. Optim., 18 (2007), 1250–1265. doi: 10.1137/060653019. doi: 10.1137/060653019 |
[2] | R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, San Diego, 1992. |
[3] | K. G. Murty, F. T. Fu, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1988. |
[4] | J. M. Pe${\rm\tilde{ n }}$a, A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. doi: 10.1137/S0895479800370342. doi: 10.1137/S0895479800370342 |
[5] | X. J. Chen, S. H. Xiang, Computation of error bounds for $P$-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. doi: 10.1007/s10107-005-0645-9. doi: 10.1007/s10107-005-0645-9 |
[6] | T. T. Chen, W. Li, X. Wu, S. Vong, Error bounds for linear complementarity problems of $MB$-matrices, Numer. Algorithms, 70 (2015), 341–356. doi: 10.1007/s11075-014-9950-9. doi: 10.1007/s11075-014-9950-9 |
[7] | P. F. Dai, C. J. Lu, Y. T. Li, New error bounds for the linear complementarity problem with an $SB$-matrix, Numer. Algorithms, 64 (2013), 741–757. doi: 10.1007/s11075-012-9691-6. doi: 10.1007/s11075-012-9691-6 |
[8] | M. García-Esnaola, J. M. Pe$\tilde{n}$a, Error bounds for linear complementarity problems for $B$-matrices, Appl. Math. Lett., 22 (2009), 1071–1075. doi: 10.1016/j.aml.2008.09.001. doi: 10.1016/j.aml.2008.09.001 |
[9] | M. García-Esnaola, J. M. Pe$\tilde{n}$a, Error bounds for linear complementarity problems involving $B^{S}$-matrices, Appl. Math. Lett., 25 (2012), 1379–1383. doi: 10.1016/j.aml.2011.12.006. doi: 10.1016/j.aml.2011.12.006 |
[10] | M. García-Esnaola, J. M. Pe$\tilde{n}$a, $B$-Nekrasov matrices and error bounds for linear complementarity problems, Numer. Algorithms, 72 (2016), 435–445. doi: 10.1007/s11075-015-0054-y. doi: 10.1007/s11075-015-0054-y |
[11] | C. Q. Li, M. T. Gan, S. R. Yang, A new error bound for linear complementarity problems for $B$-matrices, Electron. J. Linear Al., 31 (2016), 476–484. doi: 10.13001/1081-3810.3250. doi: 10.13001/1081-3810.3250 |
[12] | C. Q. Li, Y. T. Li, Weakly chained diagonally dominant $B$-matrices and error bounds for linear complementarity problems, Numer. Algorithms, 73 (2016), 985–998. doi: 10.1007/s11075-016-0125-8. doi: 10.1007/s11075-016-0125-8 |
[13] | C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for $B$-matrices, Appl. Math. Lett., 57 (2016), 108–113. doi: 10.1016/j.aml.2016.01.013. doi: 10.1016/j.aml.2016.01.013 |
[14] | L. Gao, An alternative error bound for linear complementarity problems involving $B^S$-matrices, J. Inequal. Appl., 28 (2018), 1–9. doi: 10.1186/s13660-018-1618-x. doi: 10.1186/s13660-018-1618-x |
[15] | L. Cvetković, J. M. Pe${\rm{\tilde{ n }}}$a, Minimal sets alternative to minimal Gersgorin sets, Appl. Nnmber. Math., 60 (2010), 442–451. doi: 10.1016/j.apnum.2009.09.005. doi: 10.1016/j.apnum.2009.09.005 |
[16] | X. Y. Yang, B. G. Zeng, Q. Y. Zhu, X. Liu, New upper bound for $\| A^{-1}\|_{\infty}$ of strictly diagonally dominant $M$-matrices, J. Natur. Sci. Hunan Norm. Univ., 37 (2014), 91–95. |