This article is concerned with the existence of entire solutions for the following complex second order partial differential-difference equation
$ \left(\frac{\partial^2 f(z_1, z_2)}{\partial z_1^2}+\frac{\partial^2 f(z_1, z_2)}{\partial z_2^2}\right)^{l}+f(z_1+c_1, z_2+c_2)^{k} = 1, $
where $ c_1, c_2 $ are constants in $ \mathbb{C} $ and $ k, l $ are positive integers. In addition, we also investigate the forms of finite order transcendental entire solutions for several complex second order partial differential-difference equations of Fermat type, and obtain some theorems about the existence and the forms of solutions for the above equations. Meantime, we give some examples to explain the existence of solutions for some theorems in some cases. Our results are some generalizations of the previous theorems given by Qi [
Citation: Wenju Tang, Keyu Zhang, Hongyan Xu. Results on the solutions of several second order mixed type partial differential difference equations[J]. AIMS Mathematics, 2022, 7(2): 1907-1924. doi: 10.3934/math.2022110
This article is concerned with the existence of entire solutions for the following complex second order partial differential-difference equation
$ \left(\frac{\partial^2 f(z_1, z_2)}{\partial z_1^2}+\frac{\partial^2 f(z_1, z_2)}{\partial z_2^2}\right)^{l}+f(z_1+c_1, z_2+c_2)^{k} = 1, $
where $ c_1, c_2 $ are constants in $ \mathbb{C} $ and $ k, l $ are positive integers. In addition, we also investigate the forms of finite order transcendental entire solutions for several complex second order partial differential-difference equations of Fermat type, and obtain some theorems about the existence and the forms of solutions for the above equations. Meantime, we give some examples to explain the existence of solutions for some theorems in some cases. Our results are some generalizations of the previous theorems given by Qi [
[1] | C. R. Adams, On the linear ordinary q-difference equation, Ann. Math., 30 (1928–1929), 195–205. doi: 10.2307/1968274. |
[2] | A. Biancofiore, W. Stoll, Another proof of the lemma of the logarithmic derivative in several complex variables, Princeton: Princeton University Press, 1981. doi: 10.1515/9781400881543-004. |
[3] | T. B. Cao, R. J. Korhonen, A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables, J. Math. Anal. Appl., 444 (2016), 1114–1132. doi: 10.1016/j.jmaa.2016.06.050. doi: 10.1016/j.jmaa.2016.06.050 |
[4] | Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008), 105–129. doi: 10.1007/s11139-007-9101-1. doi: 10.1007/s11139-007-9101-1 |
[5] | F. Gross, On the equation $f^n+g^n = 1$, Bull. Am. Math. Soc., 72 (1966), 86–88. |
[6] | R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–487. doi: 10.1016/j.jmaa.2005.04.010. doi: 10.1016/j.jmaa.2005.04.010 |
[7] | R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn.-M., 31 (2006), 463–478. |
[8] | P. C. Hu, Malmquist type theorem and factorization of meromorphic solutions of partial differential equations, Complex Var., 27 (1995), 269–285. doi: 10.1080/17476939508814822. doi: 10.1080/17476939508814822 |
[9] | P. C. Hu, P. Li, C. C. Yang, Unicity of meromorphic mappings, advances in complex analysis and its applications, Dordrecht: Kluwer Academic Publishers, 2003. |
[10] | G. Iyer, On certain functional equations, J. Indian. Math. Soc., 3 (1939), 312–315. |
[11] | D. Khavinson, A note on entire solutions of the eiconal equation, Am. Math. Mon., 102 (1995), 159–161. doi: 10.2307/2975351. doi: 10.2307/2975351 |
[12] | R. J. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory, 12 (2012), 343–361. doi: 10.1007/BF03321831. doi: 10.1007/BF03321831 |
[13] | B. Q. Li, On meromorphic solutions of $f^2 + g^2 = 1$, Math. Z., 258 (2008), 763–771. doi: 10.1007/s00209-007-0196-2. doi: 10.1007/s00209-007-0196-2 |
[14] | B. Q. Li, On entire solutions of Fermat type partial differential equations, Int. J. Math., 15 (2004), 473–485. doi: 10.1142/S0129167X04002399. doi: 10.1142/S0129167X04002399 |
[15] | K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. doi: 10.1016/j.jmaa.2009.05.061. doi: 10.1016/j.jmaa.2009.05.061 |
[16] | K. Liu, T. B. Cao, Entire solutions of Fermat type difference differential equations, Electron. J. Diff. Equ., 2013 (2013), 1–10. |
[17] | K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math., 99 (2012), 147–155. doi: 10.1007/s00013-012-0408-9. doi: 10.1007/s00013-012-0408-9 |
[18] | K. Liu, C. J. Song, Meromorphic solutions of complex differential-difference equations, Results Math., 72 (2017), 1759–1771. doi: 10.1007/s00025-017-0736-y. doi: 10.1007/s00025-017-0736-y |
[19] | K. Liu, L. Z. Yang, On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory, 13 (2013), 433–447. doi: 10.1007/s40315-013-0030-2. doi: 10.1007/s40315-013-0030-2 |
[20] | M. L. Liu, L. Y. Gao, Transcendental solutions of systems of complex differential-difference equations (in Chinese), Sci. Sin. Math., 49 (2019), 1–22. |
[21] | P. Montel, Lecons sur les familles normales de fonctions analytiques et leurs applications, Paris: Gauthier-Villars, 1927,135–136. |
[22] | G. Pólya, On an integral function of an integral function, J. Lond. Math. Soc., 1 (1926), 12–15. doi: 10.1112/jlms/s1-1.1.12. doi: 10.1112/jlms/s1-1.1.12 |
[23] | X. G. Qi, Y. Liu, L. Z. Yang, A note on solutions of some differential-difference equations, J. Contemp. Math. Anal., 52 (2017), 128–133. doi: 10.3103/S1068362317030037. doi: 10.3103/S1068362317030037 |
[24] | J. Rieppo, On a class of complex functional equations, Ann. Acad. Sci. Fenn. Math., 32 (2007), 151–170. |
[25] | L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Providence: American Mathematical Society, 1974. |
[26] | E. G. Saleeby, Entire and meromorphic solutions of Fermat type partial differential equations, Analysis, 19 (1999), 369–376. doi: 10.1524/anly.1999.19.4.369. doi: 10.1524/anly.1999.19.4.369 |
[27] | W. Stoll, Holomorphic functions of finite order in several complex variables, Providence: American Mathematical Society, 1974. |
[28] | R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebra, Ann. Math., 141 (1995), 553–572. doi: 10.2307/2118560. doi: 10.2307/2118560 |
[29] | A. Wiles, Modular elliptic curves and Fermats last theorem, Ann. Math., 141 (1995), 443–551. doi: 10.2307/2118559. doi: 10.2307/2118559 |
[30] | H. Y. Xu, Y. Y. Jiang, Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables, RACSAM Rev. Acad. A., 116 (2022). doi: 10.1007/s13398-021-01154-9. |
[31] | H. Y. Xu, S. Y. Liu, Q. P. Li, Entire solutions for several systems of nonlinear difference and partial differential difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), 1–22. doi: 10.1016/j.jmaa.2019.123641. doi: 10.1016/j.jmaa.2019.123641 |
[32] | H. Y. Xu, J. Tu, Growth of solutions to systems of q-difference differential equations, Electron. J. Diff. Equ., 2016 (2016), 1–14. |
[33] | H. Y. Xu, H. Wang, Notes on the existence of entire solutions for several partial differential-difference equations, B. Iran. Math. Soc., 47 (2021), 1477–1489. doi: 10.1007/s41980-020-00453-y. doi: 10.1007/s41980-020-00453-y |
[34] | L. Xu, T. B. Cao, Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 15 (2018), 1–14. doi: 10.1007/s00009-018-1274-x. doi: 10.1007/s00009-018-1274-x |
[35] | L. Xu, T. B. Cao, Correction to: Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 17 (2020), 1–4. doi: 10.1007/s00009-019-1438-3. doi: 10.1007/s00009-019-1438-3 |
[36] | C. C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Soc., 26 (1970), 332–334. doi: 10.2307/2036399. doi: 10.2307/2036399 |
[37] | C. C. Yang, P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math. (Basel), 82 (2004), 442–448. doi: 10.1007/s00013-003-4796-8. doi: 10.1007/s00013-003-4796-8 |