
The aim of this study is to obtain the analytical solutions of some prominent differential equations including the generalized Laplace, heat and wave equations by using the quadratic-phase Fourier transform. To facilitate the narrative, we formulate the preliminary results vis-a-vis the differentiation properties of the quadratic-phase Fourier transform. The obtained results are reinforced with illustrative examples.
Citation: Firdous A. Shah, Waseem Z. Lone, Kottakkaran Sooppy Nisar, Amany Salah Khalifa. Analytical solutions of generalized differential equations using quadratic-phase Fourier transform[J]. AIMS Mathematics, 2022, 7(2): 1925-1940. doi: 10.3934/math.2022111
[1] | Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103 |
[2] | Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057 |
[3] | Andrey Muravnik . Nonclassical dynamical behavior of solutions of partial differential-difference equations. AIMS Mathematics, 2025, 10(1): 1842-1858. doi: 10.3934/math.2025085 |
[4] | Zhao Li, Shan Zhao . Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation. AIMS Mathematics, 2024, 9(8): 22590-22601. doi: 10.3934/math.20241100 |
[5] | Murali Ramdoss, Ponmana Selvan-Arumugam, Choonkil Park . Ulam stability of linear differential equations using Fourier transform. AIMS Mathematics, 2020, 5(2): 766-780. doi: 10.3934/math.2020052 |
[6] | Julieta Bollati, María F. Natale, José A. Semitiel, Domingo A. Tarzia . A two-phase Stefan problem with power-type temperature-dependent thermal conductivity. Existence of a solution by two fixed points and numerical results. AIMS Mathematics, 2024, 9(8): 21189-21211. doi: 10.3934/math.20241029 |
[7] | Jeong-Kweon Seo, Byeong-Chun Shin . Reduced-order modeling using the frequency-domain method for parabolic partial differential equations. AIMS Mathematics, 2023, 8(7): 15255-15268. doi: 10.3934/math.2023779 |
[8] | Chunyan Liu . The traveling wave solution and dynamics analysis of the fractional order generalized Pochhammer–Chree equation. AIMS Mathematics, 2024, 9(12): 33956-33972. doi: 10.3934/math.20241619 |
[9] | Liping Xu, Zhi Li, Weiguo Liu, Jie Zhou . Transportation inequalities for doubly perturbed stochastic differential equations with Markovian switching. AIMS Mathematics, 2021, 6(3): 2874-2885. doi: 10.3934/math.2021173 |
[10] | Mohammed Alkinidri, Sajjad Hussain, Rab Nawaz . Analysis of noise attenuation through soft vibrating barriers: an analytical investigation. AIMS Mathematics, 2023, 8(8): 18066-18087. doi: 10.3934/math.2023918 |
The aim of this study is to obtain the analytical solutions of some prominent differential equations including the generalized Laplace, heat and wave equations by using the quadratic-phase Fourier transform. To facilitate the narrative, we formulate the preliminary results vis-a-vis the differentiation properties of the quadratic-phase Fourier transform. The obtained results are reinforced with illustrative examples.
While working on the problem of heat conduction, Joseph Fourier, made a detailed study of trigonometric series which appeared in his celebrated memoir "Thˊeorie Analytique de la Chaleur". Thereafter, Fourier's work was well received from the research community and gained an admirable spot in diverse fields of physical, mathematical and engineering sciences [1]. The field of differential and integral equations, making effective use of Fourier transforms, has gained considerable attention since its inception because of their widespread applications in numerous disciplines of physical and engineering sciences [2]. Mathematically, the Fourier transform of any square integrable function f is defined as:
F[f](ω)=1√2π∫Rf(x)e−iωxdx. | (1.1) |
A much extreme generalization of the classical Fourier transform (1.1) was recently obtained by Saitoh [3] in the form of quadratic-phase Fourier transform (QPFT), while working on the solution of heat equation via the theory of reproducing kernels. For a given square integrable function f, the quadratic-phase Fourier transform is defined by
QΩ[f](ω)=1√2π∫Rf(x)exp{i(Ax2+Bxω+Cω2+Dx+Eω)}dx, | (1.2) |
where A,B,C,D,E∈R,B≠0. The QPFT circumscribes a class of integral transforms ranging from the classical Fourier to the much recent special affine Fourier transforms [4]. Owing to the fact that the QPFT is governed by a set of free parameters, it has proved to be a reliable tool for an efficient treatment of problems demanding several controllable parameters arising in diverse branches of science and engineering, including harmonic analysis, theory of reproducing kernels, sampling, image processing, and several other fields [5,6,7].
On the flip side, it is well known that integral transforms are one of the most reliable mathematical tools for solving diverse classes of differential equations. Some of the commonly used integral transforms employed for obtaining the analytic solutions of differential equations include the Fourier, fractional Fourier, linear canonical and Laplace transforms [8,9,10,11,12]. Several other vital techniques for determining the solutions of the linear and non-linear differential equations can be found in recent literature including numerical methods, variational iteration methods and so on [13,14,15]. However, to the best of our knowledge, the solution of a generalized differential equation using the QPFT has not yet been reported in the literature. Keeping in view the fact that the QPFT is a new addition to the class of integral transforms which enjoys several extra degrees of freedom, we are deeply motivated to solve different classes of generalized differential equations in the QPFT domain. Taking this opportunity, our aim is to formulate some fundamental differentiation properties of the QPFT and employ the same for obtaining the analytical solutions of several well-known differential equations such as the laplace, wave, and heat equations. The obtained solutions are non-trivial generalizations of the solutions achieved via the classical tools governed by the Fourier, fractional Fourier, and linear canonical transforms. Nevertheless, the prolificacy of the obtained results is demonstrated via graphical simulations in the respective cases. Besides, the tabulated data is also provided for each of the differential equations at hand which portrays the advantages of QPFT over the existing transforms in the sense that it offers more degrees of freedom as the parameters in the set Ω=(A,B,C,D,E) can be customized to meet specific needs.
The remaining part of the paper is structured as follows: Section 2 deals with the recapitulation of preliminaries on the quadratic-phase Fourier transform, which will be used in subsequent sections. Section 3 is exclusively concerned with the analytic solutions of some generalized differential equations using the QPFT. The discourse is wrapped with some concluding remarks.
We shall start this section with a brief overview of the quadratic-phase Fourier transform which serves as a cornerstone for the development of the subsequent sections. With minor modifications to (1.2), we have the following definition of quadratic phase Fourier transform:
Definition 2.1. [6] For a given set of parameters Ω=(A,B,C,D,E), the quadratic-phase Fourier transform of f∈L2(R) is denoted as QΩ[f] and is defined by
QΩ[f](ω)=1√2π∫Rf(x)KΩ(ω,x)dx, | (2.1) |
where KΩ(ω,x) denotes the quadratic-phase Fourier kernel and is given by
KΩ(ω,x)=exp{−i(Ax2+Bωx+Cω2+Dx+Eω)},A,B,C,D,E∈R,B≠0. | (2.2) |
The backward transform and the Parseval's relation corresponding to (2.1) are given below:
f(x)=|B|√2π∫RQΩ[f](ω)¯KΩ(ω,x)dω, | (2.3) |
⟨f,g⟩=|B|⟨QΩ[f],QΩ[g]⟩,∀f,g∈L2(R). | (2.4) |
By appropriately choosing parameters in Ω=(A,B,C,D,E), the expression (2.1) reduces to some of the prominent integral transforms as indicated below:
∙ For A=C=D=E=0 and B=1, the expression (2.1) yields the conventional Fourier transform defined in (1.1).
∙ The fractional Fourier transform is obtained by setting D=E=0, A=−cotθ/2, B=cscθ, C=−cotθ/2, where θ≠nπ,n∈Z and then amplifying (2.1) by √1−icotθ [2]
Fα[f](ω)=∫Rf(x)Kα(x,ω)dx, | (2.5) |
where the kernel Kα(ω,x) is given by
Kα(ω,x)={√1−icotα2πexp{i2(ω2+x2)cotα−iωxcscα},α≠kπ,δ(x−ω),α=2kπ,δ(x+ω),α=(2k+1)π,k∈Z. |
∙ For D=E=0 and B≠0, we consider the transformations A→−A/2B, B→1/B, C→−C/2B. Upon multiplying (2.1) by 1/√iB, we obtain the linear canonical transform [9]
LΩ[f](ω)=1√2πiB∫Rf(x)exp{i(Ax2−2ωx+Cω2)2B}dx. | (2.6) |
Next, we shall recall the novel convolution introduced by Shah and Tantary [7] for the quadratic-phase Fourier transforms. Here, our main motive is to utilize this novel convolution for obtaining the analytical solutions of some well-known differential equations in the next subsection.
Definition 2.2. [7] If f,g∈L2(R), then the quadratic-phase convolution ⊗Ω with respect to the parameter set Ω=(A,B,C,D,E) is given as:
(f⊗Ωg)(x)=1√2π∫Rf(ξ)g(x−ξ)e2iAξ(x−ξ)dξ. | (2.7) |
Note that, the quadratic-phase convolution (2.7) obeys the following properties:
∙ Commutativity: (f⊗Ωg)(x)=(g⊗Ωf)(x)
∙ Associativity: ((f⊗Ωg)⊗Ωh)(x)=(f⊗Ω(g⊗Ωh))(x)
∙ Translation: (f⊗Ωg)(x−k)=e−2iAkx(e2iAkξf(ξ−k)⊗Ωg(ξ))(x)
∙ Scaling: (f⊗Ωg)(λx)=|λ|(f(λξ)⊗Ω′g(λξ))(x), where Ω′=(λ2A,B,C,D,E),λ∈R∗
Moreover, the convolution theorem corresponding to (2.7) reads:
QΩ[(f⊗Ωg)(x)](ω)=ei(Cω2+Eω)QΩ[f](ω)QΩ[g](ω). | (2.8) |
In this section, our main concern is to express the analytical solutions of a class of generalized partial differential equations, including the Laplace, wave, and heat equations, by making use of the quadratic-phase Fourier transform. To facilitate the intention, we shall first define the notion of generalized Schwartz space and then prove some needful differential properties in the quadratic-phase Fourier domain.
The generalized Schwartz class SΩ(R) of rapidly decaying functions associated with the quadratic-phase Fourier transforms is defined as
SΩ(R)={f(x)∈C∞(R):supx∈RxβDγxf(x)<∞}, |
with C∞(R) denoting the space of smooth functions, β,γ∈Z+∪{0} and Dx=d/dx−i(2Ax+D), denotes the modified differential operator.
We are now ready to study some differentiable properties of the quadratic-phase Fourier transform (2.1) and its kernel KΩ(ω,x):
Proposition 3.1. Let f∈SΩ(R) and KΩ(ω,x) be the kernel of quadratic-phase Fourier transform (2.1). Then, we have
(i) ¯DnxKΩ(ω,x)=(iBω)nKΩ(ω,x),n∈N,
(ii) ¯DnωKΩ(ω,x)=(iBx)nKΩ(ω,x),n∈N,
(iii) ∫R(DxK(ω,x))f(x)dx=∫RKΩ(ω,x)¯Dxf(x)dx
(iv) QΩ[Dnxf(x)](ω)=(iBω)nQΩ[f](ω),n∈N,
(v) ¯DnωQΩ[f](ω)=(iB)nQΩ[xnf(x)](ω),n∈N,
where Dx=d/dx−i(2Ax+D),Dω=d/dω−i(2Cω+E),¯Dx=−d/dx−i(2Ax+D) and ¯Dω=−d/dω−i(2Cω+E).
Proof. (i) Let KΩ(ω,x) be the kernel of quadratic-phase Fourier transform (2.1), then
¯DxKΩ(ω,x)=−(ddx+i(2Ax+D))1√2πexp{−i(Ax2+Bxω+Cω2+Dx+Eω)}=iBω√2πexp{−i(Ax2+Bxω+Cω2+Dx+Eω)}=iBωKΩ(ω,x). |
Continuing like-this n-times, we can obtain
¯DnxKΩ(ω,x)=(iBω)nKΩ(ω,x). |
(ii) The proof of (ii) is quite straightforward.
(iii) For any f∈SΩ(R), we observe that
∫R(DxKΩ(ω,x))f(x)dx=∫R(ddx−i(2Ax+D))KΩ(ω,x)f(x)dx=∫RddxKΩ(ω,x)f(x)dx−∫Ri(2Ax+D)K(ω,x)f(x)dx=−∫RKΩ(ω,x)ddxf(x)dx−∫Ri(2Ax+D)K(ω,x)f(x)dx=−∫RKΩ(ω,x)(ddx+i(2Ax+D))f(x)dx=∫RKΩ(ω,x)¯Dxf(x)dx. |
(iv) By virtue of quadratic-phase Fourier transform (2.1), we have
QΩ[Dnxf(x)](ω)=∫RKΩ(ω,x)Dnxf(x)dx=∫R¯DnxKΩ(ω,x)f(x)dx=(iBω)n∫RKΩ(ω,x)f(x)dx=(iBω)nQΩ[f](ω). |
(v) Finally, we have
¯DnωQΩ[f](ω)=∫R¯DnωKΩ(ω,x)f(x)dx=∫R(iBx)nKΩ(ω,x)f(x)dx=(iB)n∫RKΩ(ω,x)xnf(x)dx=(iB)nQΩ[xnf(x)](ω). |
The proof of Proposition 3.1 is thus completed.
We are now in a position to derive the solution of generalized Laplace, wave, and heat equations by employing the quadratic-phase Fourier transform method. We shall also provide an example for a lucid illustration of the method.
Here, we shall obtain an analytic solution of the Laplace equation in the quadratic-phase Fourier domain subjected to appropriate boundary conditions. Consider,
∇2U:=D2xU+Utt=0,−∞<x<∞,t>0, | (3.1) |
U(x,0)=f(x),−∞<x<∞, | (3.2) |
U(x,t)→0as|x|→∞andt→∞. | (3.3) |
For fixed t, applying quadratic-phase Fourier transform (2.1) on the above system of equations yields:
d2dt2QΩ[U](ω,t)−B2ω2QΩ[U](ω,t)=0,t>0, | (3.4) |
QΩ[U](ω,0)=QΩ[f](ω) | (3.5) |
QΩ[U](ω,t)→0ast→∞. | (3.6) |
Then, the solution of the transformed system of Eqs (3.4)–(3.6) is given by
QΩ[U](ω,t)=ei(Cω2+Eω)QΩ[f](ω)QΩ[g](ω), | (3.7) |
where QΩ[g](ω)=e−B|ω|t−i(Cω2+Eω).
Invoking the inversion formula of the quadratic-phase Fourier transform (2.3) for (3.7), we obtain
U(x,t)=Q−1Ω[ei(Cω2+Eω)QΩ[f](ω)QΩ[g](ω)](x). | (3.8) |
For obtaining an explicit form of the expression U(x,t) appearing in (3.8), we shall use the convolution theorem for the quadratic-phase Fourier transform (2.8) as
U(x,t)=(f⊗Ωg)(x)=1√2π∫Rf(ξ)g(x−ξ)e2iAξ(x−ξ)dξ, | (3.9) |
where
g(x)=|B|√2π∫Re−B|ω|t−i(Cω2+Eω)exp{i(Ax2+Bxω+Cω2+Dx+Eω)}dω=|B|√2π⋅ei(Ax2+Dx)∫Re−B|ω|t+iBxωdω=sgn(B)π⋅ei(Ax2+Dx)tx2+t2. | (3.10) |
After plugging (3.10) in (3.9), we get
U(x,t)=tsgn(B)π⋅ei(Ax2+Dx)∫Rf(ξ)(x−ξ)2+t2e2iAξ(x−ξ)dξ,t>0. | (3.11) |
Expression (3.11) is the required integral solution of the generalized Laplace Eq (3.1) under the given boundary conditions in the quadratic-phase Fourier domain.
∙ For the parametric set Ω=(−A/2B,1/B,−C/2B,0,0), solution (3.11) reduces to the solution of the Laplace equation in linear canonical domain as
U(x,t)=tsgn(1B)π⋅e−iAx2/2B∫Rf(ξ)(x−ξ)2+t2e−iAξ(x−ξ)/Bdξ. |
∙ For the parametric set Ω=(−cotθ/2,cscθ,−cotθ/2,0,0), θ≠nπ, one can obtain the solution of the Laplace equation via fractional Fourier transform as
U(x,t)=tsgn(cscθ)π⋅e−ix2cotθ/2∫Rf(ξ)(x−ξ)2+t2e−iAξ(x−ξ)cotθdξ. |
∙ For the parametric set Ω=(0,1,−1,0,0), solution (3.11) boils down to the solution of the ordinary Laplace equation
U(x,t)=tπ∫Rf(ξ)(x−ξ)2+t2dξ. |
Example 3.2. Let us consider the Laplace Eq (3.1) subjected to U(x,0)=δ(x), then according to (3.11), the solution has the following form:
U(x,t)=tsgn(B)π⋅ei(Ax2+Dx)∫Rδ(ξ)(x−ξ)2+t2e2iAξ(x−ξ)dx=tsgn(B)π⋅ei(Ax2+Dx)x2+t2. | (3.12) |
The solution of an Example 3.2 for the case A=B=D=1 is of the form
U(x,t)=tπ⋅ei(x2+x)x2+t2. | (3.13) |
Moreover, the solution of Example 3.2 for the case A=B=D=1 is graphically shown in Figure 1. For fixed values of t, the solution of the Example 3.2 for the case A=B=D=1 corresponding to different values of x are tabulated in Table 1.
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0325+0.0464i | 0.0513+0.0732i | 0.0569+0.0813i | 0.0557+0.0795i |
−1.2 | 0.0550+0.0135i | 0.0869+0.0213i | 0.0964+0.0236i | 0.0943+0.0231i |
−0.8 | 0.0559−0.0090i | 0.0883−0.0142i | 0.0980−0.0158i | 0.0958−0.0155i |
−0.4 | 0.550−0.0135i | 0.0869−0.0213i | 0.0964−0.0236i | 0.0943−0.0231i |
0 | 0.0566+0.0000i | 0.0894+0.0000i | 0.0993+0.0000i | 0.0970+0.0000i |
0.4 | 0.0480+0.0301i | 0.0758+0.0475i | 0.0841+0.0527i | 0.0822+0.0515i |
0.8 | 0.0074+0.0562i | 0.0117+0.0886i | 0.0129+0.0984i | 0.0127+0.0962i |
1.2 | −0.0497+0.0272i | −0.0784+0.0430i | −0.0870+0.0477i | −0.0851+0.0467i |
1.6 | −0.0297−0.0482i | −0.0469−0.0761i | −0.0521−0.0845i | −0.0509−0.0826i |
The solution of an Example 3.2 for the case A=D=0 and B=1, yields the solution of the classical Laplace equation corresponding to the initial condition U(x,0)=δ(x) and is of the form
U(x,t)=tπ⋅1x2+t2. | (3.14) |
For a lucid illustration of the behavior of the solution of the traditional Laplace equation subjected to U(x,0)=δ(x), a graphical representation of (3.14) is presented in Figure 2.
The generalized wave equation defined on a Schwartz class SΩ(R) is given by
Utt=k2¯D2xU,−∞<k,x<∞,t>0, | (3.15) |
U(x,0)=f(x),Ut(x,0)=g(x),−∞<x<∞,t>0. | (3.16) |
Suppose that U(x,t) as well as its first partial derivatives vanish at infinity. Then, invoking the quadratic-phase Fourier transform yields
d2dt2QΩ[U](ω,t)+k2B2ω2QΩ[U](ω,t)=0, | (3.17) |
QΩ[U](ω,0)=QΩ[f](ω),ddtQΩ[U](ω,t)|t=0=QΩ[g](ω). | (3.18) |
Consequently, we have
QΩ[U](ω,t)=QΩ[f](ω)cos(Bktω)+QΩ[g](ω)sin(Bktω)Bkω=QΩ[f](ω)2{eiBktω+e−iBktω}+QΩ[g](ω)2iBkω{eiBktω−e−iBktω}. | (3.19) |
Therefore, the desired solution is obtained by applying the backward quadratic-phase Fourier transformation to (3.19) as:
U(x,t)=|B|√2π∫R{QΩ[f](ω)2{eiBktω+e−iBktω}+QΩ[g](ω)2iBkω{eiBktω−e−iBktω}}ׯKΩ(ω,x)dω=|B|√2π∫R{(12√2π∫Rf(ξ){eiBktω+e−iBktω}KΩ(ω,ξ)dξ)+(12iBkω√2π∫Rg(ξ){eiBktω−e−iBktω}KΩ(ω,ξ)dξ)}¯KΩ(ω,x)dω=|B|2π∫R{(12∫Rf(ξ){eiBktω+e−iBktω}e−i(Aξ2+Bωξ+Dξ)ei(Ax2+Bωx+Dx)dξ)+(12iBkω∫Rg(ξ){eiBktω−e−iBktω}e−i(aξ2+Bωξ+Dξ)ei(Ax2+Bωx+Dx)dξ)}dω=|B|2π⋅ei(Ax2+Dx)∫R{(12∫Rf(ξ){eiBktω+e−iBktω}e−i(Aξ2+Bωξ+Dξ)eiBωxdξ)+(12iBkω∫Rg(ξ){eiBktω−e−iBktω}e−i(Aξ2+Bωξ+Dξ)eiBωxdξ)}dω. |
Setting F(ξ)=f(ξ)e−i(Aξ2+Dξ),G(ξ)=g(ξ)e−i(Aξ2+Dξ) and v=Bω, we obtain
U(x,t)=sgn(B)2π⋅ei(Ax2+Dx)∫R{(12∫RF(ξ)e−ivξdξ{eiktv+e−iktv}eivx)+(12ikv∫RG(ξ)e−ivξdξ{eiktv−e−iktv}eivx)}dv. | (3.20) |
By invoking the definition of Fourier transform, (3.20) takes the form:
U(x,t)=sgn(B)√2π⋅ei(Ax2+Dx)∫R{12F[F](v){ei(x+kt)v+ei(x−kt)v}+12ikvF[G](v){ei(x+kt)v−ei(x−kt)v}}dv=sgn(B)ei(Ax2+Dx){12(F(x+kt)+F(x−kt))+12k∫RF[G](v){∫x+ktx−kteivsds}dv}=sgn(B)ei(Ax2+Dx){12(F(x+kt)+F(x−kt))+12k∫x+ktx−kt{∫RF[G](v)eivsdv}ds}=sgn(B)ei(Ax2+Dx){12(F(x+kt)+F(x−kt))+12k∫x+ktx−ktG(s)ds}. | (3.21) |
Substituting back the values of F and G in (3.21), we get
U(x,t)=sgn(B)ei(Ax2+Dx){12(f(x+kt)ei(A(x+kt)2+D(x+kt))+f(x−kt)×ei(A(x−kt)2+D(x−kt)))+12k∫x+ktx−ktg(s)ei(As2+Ds)ds}. | (3.22) |
Expression (3.22) is the desired solution corresponding to (3.15) in the quadratic-phase Fourier domain.
∙ For the parametric set Ω=(−A/2B,1/B,−C/2B,0,0), Eq (3.22) reduces to the solution of the wave equation in the linear canonical domain
U(x,t)=sgn(1B)eiAx2/2B{12(f(x+kt)e−iA(x+kt)2/2B+f(x−kt)e−iA(x−kt)2/2B)+12k∫x+ktx−ktg(s)e−iAs2/2Bds}. |
∙ For the parametric set Ω=(−cotθ/2,cscθ,−cotθ/2,0,0), θ≠nπ, one can obtain the solution of the generalized wave equation in fractional Fourier domain as
U(x,t)=sgn(cscθ)eicotθx2/2{12(f(x+kt)e−icotθ(x+kt)2/2+f(x−kt)e−icotθ(x−kt)2/2)+12k∫x+ktx−ktg(s)e−icotθs2/2ds}. |
∙ For the parametric set Ω=(0,1,−1,0,0), Eq (3.22) boils down to the classical solution of the wave equation
U(x,t)=12(f(x+kt)+f(x−kt))+12k∫x+ktx−ktg(s)ds. |
Example 3.3. Consider the initial value problem:
Utt=¯D2xU,−∞<x<∞,t>0,U(x,0)=e−x2,Ut(x,0)=e−x2. |
Then, according to (3.22), the solution of the above system is expressible as:
U(x,t)=sgn(B)2⋅ei(Ax2+Dx){e−(x+t)2ei(A(x+t)2+D(x+t))+e−(x−t)2ei(A(x−t)2+D(x−t))+∫x+tx−te−s2ei(As2+Ds)ds}. | (3.23) |
In particular, the solution (3.23) of an Example 3.3 for the case A=B=D=1 takes the form:
U(x,t)=ei(x2+x)2{ei(x+t)+ei(x−t))+∫x+tx−te−s2+i(s2+s)ds}=ei(x2+x)2{ei(x+t)+ei(x−t))+i√(1+i)π2√2⋅e−(1+i)/8×(erfi(√1+i2√2(1+2(1+i)(x−t)))−erfi(√1+i2√2(1+2(1+i)(x+t))))}. | (3.24) |
The 3D plots of the solution of Example 3.3 are depicted in Figure 3, while, the estimates of U(x,t) in (3.24) for different values of x and fixed t are presented in Table 2.
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0656+0.1300i | 0.2625+0.2295i | 0.3192+0.3784i | 0.0216+0.4255i |
−1.2 | 0.3101+0.0367i | 0.4750+0.0394i | 0.3693+0.2689i | −0.0287+0.2621i |
−0.8 | 0.5159−0.1442i | 0.4845+0.0572i | 0.1553+0.2634i | −0.0934+0.0726i |
−0.4 | 0.7013−0.1362i | 0.3291+0.2522i | −0.0700+0.1444i | −0.0291−0.0271i |
0 | 0.6622+0.1691i | 0.1074+0.1673i | −0.0047+0.0058i | 0.0050+0.0058i |
0.4 | 0.2982+0.3944i | 0.2810+0.0603i | −0.1301+0.0897i | 0.0008+0.0396i |
0.8 | −0.1428+0.3531i | 0.1569+0.4641i | 0.1001+0.2897i | −0.0127+0.1177i |
1.2 | −0.2203−0.1721i | −0.4697+0.1232i | −0.3457+0.2984i | −0.2080+0.1620i |
1.6 | 0.1446+0.0219i | 0.1386−0.3198i | −0.2119−0.4474i | −0.3034−0.2992i |
Also for A=D=0 and B=1, solution (3.23) correspond to the classical case and is given by
U(x,t)=12(e−(x+t)2+e−(x−t)2)+12∫x+tx−te−s2ds=12(e−(x+t)2+e−(x−t)2)+√π4(erf(x+t)−erf(x−t)). | (3.25) |
For a lucid illustration of the behaviour of one dimensional wave equation, a graphical representation of the expression (3.25) is depicted in Figure 4.
Consider the heat equation associated with the quadratic-phase Fourier transform given by
Ut=k2¯D2xU(x,t),−∞<k,x<∞,t>0, | (3.26) |
subjected to
U(x,0)=f(x). | (3.27) |
Applying quadratic-phase Fourier transform (2.1) to the above system of equations, we obtain
ddtQΩ[U](ω,t)+k2B2ω2QΩ[U](ω,t)=0, | (3.28) |
QΩ[U](ω,0)=QΩ[f](ω). | (3.29) |
Subsequently, the complementary function of the Eq (3.28) is given by
QΩ[U](ω,t)=ei(Cω2+Eω)QΩ[f](ω)QΩ[g](ω), | (3.30) |
where QΩ[g](ω)=e−k2B2ω2t−i(Cω2+Eω).
Invoking the convolution theorem (2.8) for quadratic-phase Fourier transform, we obtain the solution of (3.30) as:
U(x,t)=1√2π∫Rf(ξ)g(x−ξ)e2iAξ(x−ξ)dξ, | (3.31) |
where
g(x)=|B|√2π∫Re−k2B2ω2t−i(Cω2+Eω)¯QΩ(ω,x)dω=|B|√2π⋅ei(Ax2+Dx)∫Re−(k2B2t)ω2+(iBx)ωdω=sgn(B)k√2t⋅ei(Ax2+Dx)−x2/4k2t,t>0. | (3.32) |
Implementing (3.32) in (3.31), we obtain
U(x,t)=sgn(B)2k√πt∫Rf(ξ)exp{i(x−ξ)(A(x−ξ)+2Aξ+D)−(x−ξ)24k2t}dξ. | (3.33) |
Expression (3.33) is the desired solution of the heat equation in the quadratic-phase Fourier domain.
∙ For the case Ω=(−A/2B,1/B,−C/2B,0,0), solution (3.33) boils down to the solution of the heat equation in linear canonical domain:
U(x,t)=sgn(1B)2k√πt∫Rf(ξ)exp{−iA(x−ξ)(x−3ξ)2B−(x−ξ)24k2t}dξ. |
∙ For the case Ω=(−cotθ/2,cscθ,−cotθ/2,0,0), θ≠nπ, one can obtain the solution in the context of fractional Fourier transform as
U(x,t)=sgn(cscθ)2k√πt∫Rf(ξ)exp{−icotθ(x−ξ)(x−3ξ)2−(x−ξ)24k2t}dξ. |
∙ For the case Ω=(0,1,−1,0,0), solution (3.33) reduces to the classical solution of the heat equation as
U(x,t)=12k√πt∫Rf(ξ)e−(x−ξ)2/4k2tdξ. |
Example 3.4. Consider the initial value problem:
Ut=14¯D2xU(x,t),−∞<x<∞,t>0,U(x,0)=δ(x). |
Then, according to (3.33), we can express the solution as:
U(x,t)=sgn(B)√πt∫Rδ(ξ)exp{i(x−ξ)(A(x−ξ)+2Aξ+D)−(x−ξ)2t}dξ=sgn(B)√πt⋅exp{i(Ax2+Dx)−x2t}. | (3.34) |
In particular, for A=B=D=1, solution (3.34) is expressible as under:
U(x,t)=1√πt⋅exp{i(x2+x)−x2t}. | (3.35) |
The graphical representation of the solution (3.35) of an Example 3.4 for the case A=B=D=1 is depicted in Figure 5. To show the numerical values of the solution (3.35) for various values of x and fixed t are presented in Table 3.
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0027+0.0039i | 0.0250+0.0357i | 0.0479+0.0685i | 0.0636+0.0909i |
−1.2 | 0.0046+0.0011i | 0.0424+0.0104i | 0.0812+0.0199i | 0.1077+0.0264i |
−0.8 | 0.0047−0.0008i | 0.0431−0.0069i | 0.0825−0.0133i | 0.1095−0.0177i |
−0.4 | 0.0046−0.0011i | 0.0424−0.0104i | 0.0812−0.0199i | 0.1077−0.0264i |
0 | 0.0048+0.0000i | 0.0436+0.0000i | 0.0836+0.0000i | 0.1109+0.0000i |
0.4 | 0.0040+0.0025i | 0.0370+0.0232i | 0.0708+0.0444i | 0.0940+0.0589i |
0.8 | 0.0006+0.0047i | 0.0057+0.0432i | 0.0109+0.0829i | 0.0145+0.1100i |
1.2 | −0.0042+0.0023i | −0.0382+0.0210i | −0.0733+0.0402i | −0.0973+0.0533i |
1.6 | −0.0025−0.0041i | −0.0229−0.0371i | −0.0439−0.0712i | −0.0582−0.0944i |
Also for A=D=0,B=1, we have from (3.34)
U(x,t)=1√πt⋅e−x2/t, | (3.36) |
which can be represented graphically in Figure 6 as:
In this article, we have investigated the analytic solutions of several prominent differential equations including the Laplace, wave, and the heat equations by employing the quadratic-phase Fourier transform. This strategy of obtaining the analytical solution of differential equations is novel to the literature and stands for its efficiency and simplicity. Moreover, this technique is advantageous over the existing ones in the sense that it is direct, compatible, and useful in investigating the problems in science and engineering demanding analytical solutions of non-linear systems. For lucid illustration of the novel technique, several examples and three-dimensional visualizations have been depicted in Figures 1–6. In addition, the solution of equations for various values is illustrated in Tables 1–3. These analytical solutions could have a wide range of applications in science and engineering. We observe that the obtained solutions are generalized versions of the solutions to the traditional Laplace, wave, and heat equations.
The authors would like to express their gratitude to the anonymous referees for their valuable comments and suggestions which improved the overall presentation of the article. Moreover, the first author is supported by SERB (DST), Government of India, under Grant MTR/2017/000844 (MATRICS). This work was supported by Taif University Researchers Supporting Project number (TURSP-2020/123), Taif University, Taif, Saudi Arabia.
The authors declare that they have no conflicts of interest.
[1] | L. Debnath, F. A. Shah, Wavelet transforms and their applications, Boston: Birkhäuser, 2015. |
[2] | L. Debnath, F. A. Shah, Lecture notes on wavelet transforms, Boston: Birkhäuser, 2017. doi: 10.1007/978-3-319-59433-0. |
[3] | S. Saitoh, Theory of reproducing kernels: Applications to approximate solutions of bounded linear operator functions on Hilbert spaces, In: Selected papers on analysis and differential equations, American Mathematical Society Translations: Series 2, 2010. doi: 10.1090/trans2/230. |
[4] | L. P. Castro, M. R. Haque, M. M. Murshed, S. Saitoh, N. M. Tuan, Quadratic Fourier transforms, Ann. Funct. Anal., 5 (2014), 10–23. doi: 10.15352/afa/1391614564. |
[5] |
L. P. Castro, L. T. Minh, N. Tuan, New convolutions for quadratic-phase Fourier integral operators and their applications, Mediterr. J. Math., 15 (2018), 1–13. doi: 10.1007/s00009-017-1063-y. doi: 10.1007/s00009-017-1063-y
![]() |
[6] |
F. A. Shah, K. S. Nisar, W. Z. Lone, A. Y. Tantary, Uncertainty principles for the quadratic-phase Fourier transforms, Math. Method. Appl. Sci., 44 (2021), 10416–10431. doi: 10.1002/mma.7417. doi: 10.1002/mma.7417
![]() |
[7] | F. A. Shah, W. Z. Lone, Quadratic-phase wavelet transform with applications to generalized differential equations, Math. Method. Appl. Sci., 2021. doi: 10.1002/mma.7842. |
[8] | L. Debnath, D. Bhatta, Integral transforms and their applications, New York: Chapman and Hall/CRC Press, 2006. doi: 10.1201/9781420010916. |
[9] | J. J. Healy, M. A. Kutay, H. M. Ozaktas, J. T. Sheridan, Linear canonical transforms: Theory and applications, New York: Springer, 2016. doi: 10.1007/978-1-4939-3028-9. |
[10] |
T. C. Mahor, R. Mishra, R. Jain, Analytical solutions of linear fractional partial differential equations using fractional Fourier transform, J. Comput. Appl. Math., 385 (2021), 113202. doi: 10.1016/j.cam.2020.113202. doi: 10.1016/j.cam.2020.113202
![]() |
[11] |
M. Bahri, R. Ashino, Solving generalized wave and heat equations using linear canonical transform and sampling formulae, Abstr. Appl. Anal., 2020 (2020), 1273194. doi: 10.1155/2020/1273194. doi: 10.1155/2020/1273194
![]() |
[12] |
Z. C. Zhang, Linear canonical transform's differentiation properties and their application in solving generalized differential equations, Optik, 188 (2019), 287–293. doi: 10.1016/j.ijleo.2019.05.036. doi: 10.1016/j.ijleo.2019.05.036
![]() |
[13] |
H. Ahmad, T. A. Khan, Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations, J. Low Freq. Noise V. A., 38 (2019), 1113–1124. doi: 10.1177/1461348418823126. doi: 10.1177/1461348418823126
![]() |
[14] |
H. Ahmad, T. A. Khan, I. Ahmad, P. S. Stanimirović, Y. M. Chu, A new analyzing technique for non linear time fractional Cauchy reaction-diffusion model equations, Results Phys., 19 (2020), 103462. doi: 10.1016/j.rinp.2020.103462. doi: 10.1016/j.rinp.2020.103462
![]() |
[15] |
H. K. Barman, M. S. Aktar, M. H. Uddin, M. A. Akbar, D. Baleanue, M. S. Osman, Physically significant wave solutions to the Riemann wave equations and the Landau-Ginsburg-Higgs equation, Results Phys., 27 (2021), 104517. doi: 10.1016/j.rinp.2021.104517. doi: 10.1016/j.rinp.2021.104517
![]() |
1. | P.O. Amadi, A.N. Ikot, U.S. Okorie, L.F. Obagboye, G.J. Rampho, R. Horchani, M.C. Onyeaju, H.I. Alrebdi, A.-H. Abdel-Aty, Shannon entropy and complexity measures for Bohr Hamiltonian with triaxial nuclei, 2022, 39, 22113797, 105744, 10.1016/j.rinp.2022.105744 | |
2. | Hari M. Srivastava, Waseem Z. Lone, Firdous A. Shah, Ahmed I. Zayed, Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures, 2022, 24, 1099-4300, 1340, 10.3390/e24101340 | |
3. | William Guo, A guide for using integration by parts: Pet-LoPo-InPo, 2022, 30, 2688-1594, 3572, 10.3934/era.2022182 | |
4. | Mawardi Bahri, Samsul Ariffin Abdul Karim, Some Essential Relations for the Quaternion Quadratic-Phase Fourier Transform, 2023, 11, 2227-7390, 1235, 10.3390/math11051235 | |
5. | Waseem Z. Lone, Firdous A. Shah, Weighted convolutions in the quadratic-phase Fourier domains: Product theorems and applications, 2022, 270, 00304026, 169978, 10.1016/j.ijleo.2022.169978 | |
6. | Sri Sulasteri, Mawardi Bahri, Nasrullah Bachtiar, Jeffry Kusuma, Agustinus Ribal, Solving Generalized Heat and Generalized Laplace Equations Using Fractional Fourier Transform, 2023, 7, 2504-3110, 557, 10.3390/fractalfract7070557 | |
7. | JAY SINGH MAURYA, SANTOSH KUMAR UPADHYAY, CHARACTERIZATIONS OF THE INVERSION FORMULA OF THE CONTINUOUS BESSEL WAVELET TRANSFORM OF DISTRIBUTIONS IN Hμ′(ℝ+), 2023, 31, 0218-348X, 10.1142/S0218348X23400303 | |
8. | Mohra Zayed, Aamir H. Dar, M. Younus Bhat, Discrete Quaternion Quadratic Phase Fourier Transform, 2025, 19, 1661-8254, 10.1007/s11785-025-01677-8 |
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0325+0.0464i | 0.0513+0.0732i | 0.0569+0.0813i | 0.0557+0.0795i |
−1.2 | 0.0550+0.0135i | 0.0869+0.0213i | 0.0964+0.0236i | 0.0943+0.0231i |
−0.8 | 0.0559−0.0090i | 0.0883−0.0142i | 0.0980−0.0158i | 0.0958−0.0155i |
−0.4 | 0.550−0.0135i | 0.0869−0.0213i | 0.0964−0.0236i | 0.0943−0.0231i |
0 | 0.0566+0.0000i | 0.0894+0.0000i | 0.0993+0.0000i | 0.0970+0.0000i |
0.4 | 0.0480+0.0301i | 0.0758+0.0475i | 0.0841+0.0527i | 0.0822+0.0515i |
0.8 | 0.0074+0.0562i | 0.0117+0.0886i | 0.0129+0.0984i | 0.0127+0.0962i |
1.2 | −0.0497+0.0272i | −0.0784+0.0430i | −0.0870+0.0477i | −0.0851+0.0467i |
1.6 | −0.0297−0.0482i | −0.0469−0.0761i | −0.0521−0.0845i | −0.0509−0.0826i |
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0656+0.1300i | 0.2625+0.2295i | 0.3192+0.3784i | 0.0216+0.4255i |
−1.2 | 0.3101+0.0367i | 0.4750+0.0394i | 0.3693+0.2689i | −0.0287+0.2621i |
−0.8 | 0.5159−0.1442i | 0.4845+0.0572i | 0.1553+0.2634i | −0.0934+0.0726i |
−0.4 | 0.7013−0.1362i | 0.3291+0.2522i | −0.0700+0.1444i | −0.0291−0.0271i |
0 | 0.6622+0.1691i | 0.1074+0.1673i | −0.0047+0.0058i | 0.0050+0.0058i |
0.4 | 0.2982+0.3944i | 0.2810+0.0603i | −0.1301+0.0897i | 0.0008+0.0396i |
0.8 | −0.1428+0.3531i | 0.1569+0.4641i | 0.1001+0.2897i | −0.0127+0.1177i |
1.2 | −0.2203−0.1721i | −0.4697+0.1232i | −0.3457+0.2984i | −0.2080+0.1620i |
1.6 | 0.1446+0.0219i | 0.1386−0.3198i | −0.2119−0.4474i | −0.3034−0.2992i |
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0027+0.0039i | 0.0250+0.0357i | 0.0479+0.0685i | 0.0636+0.0909i |
−1.2 | 0.0046+0.0011i | 0.0424+0.0104i | 0.0812+0.0199i | 0.1077+0.0264i |
−0.8 | 0.0047−0.0008i | 0.0431−0.0069i | 0.0825−0.0133i | 0.1095−0.0177i |
−0.4 | 0.0046−0.0011i | 0.0424−0.0104i | 0.0812−0.0199i | 0.1077−0.0264i |
0 | 0.0048+0.0000i | 0.0436+0.0000i | 0.0836+0.0000i | 0.1109+0.0000i |
0.4 | 0.0040+0.0025i | 0.0370+0.0232i | 0.0708+0.0444i | 0.0940+0.0589i |
0.8 | 0.0006+0.0047i | 0.0057+0.0432i | 0.0109+0.0829i | 0.0145+0.1100i |
1.2 | −0.0042+0.0023i | −0.0382+0.0210i | −0.0733+0.0402i | −0.0973+0.0533i |
1.6 | −0.0025−0.0041i | −0.0229−0.0371i | −0.0439−0.0712i | −0.0582−0.0944i |
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0325+0.0464i | 0.0513+0.0732i | 0.0569+0.0813i | 0.0557+0.0795i |
−1.2 | 0.0550+0.0135i | 0.0869+0.0213i | 0.0964+0.0236i | 0.0943+0.0231i |
−0.8 | 0.0559−0.0090i | 0.0883−0.0142i | 0.0980−0.0158i | 0.0958−0.0155i |
−0.4 | 0.550−0.0135i | 0.0869−0.0213i | 0.0964−0.0236i | 0.0943−0.0231i |
0 | 0.0566+0.0000i | 0.0894+0.0000i | 0.0993+0.0000i | 0.0970+0.0000i |
0.4 | 0.0480+0.0301i | 0.0758+0.0475i | 0.0841+0.0527i | 0.0822+0.0515i |
0.8 | 0.0074+0.0562i | 0.0117+0.0886i | 0.0129+0.0984i | 0.0127+0.0962i |
1.2 | −0.0497+0.0272i | −0.0784+0.0430i | −0.0870+0.0477i | −0.0851+0.0467i |
1.6 | −0.0297−0.0482i | −0.0469−0.0761i | −0.0521−0.0845i | −0.0509−0.0826i |
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0656+0.1300i | 0.2625+0.2295i | 0.3192+0.3784i | 0.0216+0.4255i |
−1.2 | 0.3101+0.0367i | 0.4750+0.0394i | 0.3693+0.2689i | −0.0287+0.2621i |
−0.8 | 0.5159−0.1442i | 0.4845+0.0572i | 0.1553+0.2634i | −0.0934+0.0726i |
−0.4 | 0.7013−0.1362i | 0.3291+0.2522i | −0.0700+0.1444i | −0.0291−0.0271i |
0 | 0.6622+0.1691i | 0.1074+0.1673i | −0.0047+0.0058i | 0.0050+0.0058i |
0.4 | 0.2982+0.3944i | 0.2810+0.0603i | −0.1301+0.0897i | 0.0008+0.0396i |
0.8 | −0.1428+0.3531i | 0.1569+0.4641i | 0.1001+0.2897i | −0.0127+0.1177i |
1.2 | −0.2203−0.1721i | −0.4697+0.1232i | −0.3457+0.2984i | −0.2080+0.1620i |
1.6 | 0.1446+0.0219i | 0.1386−0.3198i | −0.2119−0.4474i | −0.3034−0.2992i |
t=0.5 | t=1.0 | t=1.5 | t=2.0 | |
x | u(x,t) | u(x,t) | u(x,t) | u(x,t) |
−1.6 | 0.0027+0.0039i | 0.0250+0.0357i | 0.0479+0.0685i | 0.0636+0.0909i |
−1.2 | 0.0046+0.0011i | 0.0424+0.0104i | 0.0812+0.0199i | 0.1077+0.0264i |
−0.8 | 0.0047−0.0008i | 0.0431−0.0069i | 0.0825−0.0133i | 0.1095−0.0177i |
−0.4 | 0.0046−0.0011i | 0.0424−0.0104i | 0.0812−0.0199i | 0.1077−0.0264i |
0 | 0.0048+0.0000i | 0.0436+0.0000i | 0.0836+0.0000i | 0.1109+0.0000i |
0.4 | 0.0040+0.0025i | 0.0370+0.0232i | 0.0708+0.0444i | 0.0940+0.0589i |
0.8 | 0.0006+0.0047i | 0.0057+0.0432i | 0.0109+0.0829i | 0.0145+0.1100i |
1.2 | −0.0042+0.0023i | −0.0382+0.0210i | −0.0733+0.0402i | −0.0973+0.0533i |
1.6 | −0.0025−0.0041i | −0.0229−0.0371i | −0.0439−0.0712i | −0.0582−0.0944i |