In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform.
Citation: Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali. Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform[J]. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103
In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform.
[1] | E. Bazhlekova, I. Bazhlekov, Viscoelastic flows with fractional derivative models: Computational approach by convolutional calculus of Dimovski, Fract. Calc. Appl. Anal., 17 (2014), 954–976. doi: 10.2478/s13540-014-0209-x. doi: 10.2478/s13540-014-0209-x |
[2] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, methods of their solution and some of their applications, Elsevier, 1998. |
[3] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. doi: 10.1016/j.cnsns.2010.05.027. doi: 10.1016/j.cnsns.2010.05.027 |
[4] | F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. doi: 10.1016/j.camwa.2011.03.002. doi: 10.1016/j.camwa.2011.03.002 |
[5] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. doi: 10.1016/j.chaos.2020.109705. doi: 10.1016/j.chaos.2020.109705 |
[6] | D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. doi: 10.1186/s13661-020-01361-0. doi: 10.1186/s13661-020-01361-0 |
[7] | S. F. Lacroix, Traité du cacul différential et du calcul intégral, Paris: Courcier, 1819. |
[8] | A. Ali, B. Samet, K. Shah, R. A. Khan, Existence and stability of the solution to a toppled system of differential equations of non-integer order, Bound. Value Probl., 2017 (2017), 16. doi: 10.1186/s13661-017-0749-1. doi: 10.1186/s13661-017-0749-1 |
[9] | K. Shah, W. Hussain, Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory, Numer. Func. Anal. Opt., 40 (2019), 1355–1372. doi: 10.1080/01630563.2019.1604545. doi: 10.1080/01630563.2019.1604545 |
[10] | D. Baleanu, A. Mousalou, S. Rezapour, On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integrodifferential equations, Bound. Value Probl., 2017 (2017), 145. doi: 10.1186/s13661-017-0867-9. doi: 10.1186/s13661-017-0867-9 |
[11] | D. Baleanu, R. P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 112. doi: 10.1186/1687-2770-2013-112. doi: 10.1186/1687-2770-2013-112 |
[12] | D. Baleanu, S. Rezapour, H. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 371 (2013), 20120144. doi: 10.1098/rsta.2012.0144. doi: 10.1098/rsta.2012.0144 |
[13] | S. M. Ulam, A collection of mathematical problems, Interscience Publishers, 1960. |
[14] | D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA., 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222. doi: 10.1073/pnas.27.4.222 |
[15] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297–300. doi: 10.2307/2042795. doi: 10.2307/2042795 |
[16] | Y. Luchko, M. M. Yuri, Some new properties and applications of a fractional Fourier transform, J. Inequal. Spec. Funct., 8 (2017), 13–27. |
[17] | H. M. Ozaktas, M. A. Kutay, The fractional Fourier transform, In: 2001 European Control Conference (ECC), 2001, 1477–1483. doi: 10.23919/ECC.2001.7076127. |
[18] | K. Liu, J. Wang, Y. Zhou, D. O'Regan, Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 132 (2020), 109534. doi: 10.1016/j.chaos.2019.109534. doi: 10.1016/j.chaos.2019.109534 |
[19] | H. Vu, T. V. An, N. V. Hoa, Ulam-Hyers stability of uncertain functional differential equation in a fuzzy setting with Caputo-Hadamard fractional derivative concept, J. Intell. Fuzzy Syst., 38 (2020), 2245–2259. doi: 10.3233/JIFS-191025. doi: 10.3233/JIFS-191025 |
[20] | C. Wang, T. Z. Xu, Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative, Discrete Cont. Dyn. S, 10 (2017), 505–521. doi: 10.3934/dcdss.2017025. doi: 10.3934/dcdss.2017025 |
[21] | Y. Guo, X. B. Shu, Y, Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with an infinite delay of order $1 < \beta < 2$, Bound. Value Probl., 2019 (2019), 59. doi: 10.1186/s13661-019-1172-6. doi: 10.1186/s13661-019-1172-6 |
[22] | Q. Dai, R. Gao, Z. Li, C. Wang, Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations, Adv. Differ. Equ., 2020 (2020), 103. doi: 10.1186/s13662-020-02558-4. doi: 10.1186/s13662-020-02558-4 |
[23] | S. K. Upadhyay, K. Khatterwani, Characterizations of certain Hankel transform involving Riemann-Liouville fractional derivatives, Comp. Appl. Math., 38 (2019), 24. doi: doi.org/10.1007/s40314-019-0791-y. |
[24] | D. Baleanu, S. Rezapour, Z. Saberpour, On fractional integrodifferential inclusions via the extended fractional Caputo-Fabrizio derivation, Bound. Value Probl., 2019 (2019), 79. doi: 10.1186/s13661-019-1194-0. doi: 10.1186/s13661-019-1194-0 |
[25] | M. S. Aydogan, D. Baleanu, A. Mousalou, S. Rezapour, On high order fractional integrodifferential equations including the Caputo-Fabrizio derivative, Bound. Value Probl., 2018 (2018), 90. doi: 10.1186/s13661-018-1008-9. doi: 10.1186/s13661-018-1008-9 |
[26] | A. Khan, M. T. Syam, A. Zada, H. Khan, Stability analysis of nonlinear fractional differential equations with Caputo and Riemann–Liouville derivatives, Eur. Phys. J. Plus, 133 (2018), 264. doi: 10.1140/epjp/i2018-12119-6. doi: 10.1140/epjp/i2018-12119-6 |
[27] | A. Mohanapriya, A. Ganesh, N. Gunasekaran, The Fourier transform approach to Hyers-Ulam stability of differential equation of second order, J. Phys. Conf. Ser., 1597 (2020), 012027. doi: 10.1088/1742-6596/1597/1/012027. doi: 10.1088/1742-6596/1597/1/012027 |
[28] | A. Mohanapriya, C. Park, A. Ganesh, V. Govindan, Mittag-Leffler-Hyers-Ulam stability of differential equation using Fourier transform, Adv. Differ. Equ., 2020 (2020), 389. doi: 10.1186/s13662-020-02854-z. doi: 10.1186/s13662-020-02854-z |
[29] | D. Baleanu, S. S. Sajjadi, A. Jajarmi. Z. Defterli, On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control, Adv. Differ. Equ., 2021 (2021), 234. doi: 10.1186/s13662-021-03393-x. doi: 10.1186/s13662-021-03393-x |
[30] | D. Baleanu, S. S. Sajjadi, H. Jihad, A. Jajarmi, E. Estiri, Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system, Adv. Differ. Equ., 2021 (2021), 157. doi: 10.1186/s13662-021-03320-0. doi: 10.1186/s13662-021-03320-0 |
[31] | D. Baleanu, S. Zibaei, M. Namjoo, A. Jajarmi, A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system, Adv. Differ. Equ., 2021 (2021), 308. doi: 10.1186/s13662-021-03454-1. doi: 10.1186/s13662-021-03454-1 |
[32] | A. I. Zayed, Fractional Fourier transform of generalized functions, Integral Transform. Spec. Funct., 7 (1998), 299–312. doi: 10.1080/10652469808819206. doi: 10.1080/10652469808819206 |
[33] | Y. F. Luchko, H. Matrínez, J. J. Trujillo, Fractional Fourier transform and some of its applications, Fract. Calc. Appl. Anal., 11 (2008), 457–470. |
[34] | P. I. Lizorkin, Liouville differentiation and the functional spaces ${L_p}^{r}(E_n)$. Imbedding theorems, Mat. Sb. (N. S.), 60 (1963), 325–353. |
[35] | P. I. Lizorkin, Generalized Liouville differentiation and the method of multipliers in the theory of embeddings of function classes, Math. Notes Acad. Sci. USSR, 4 (1968), 771–779. doi: 10.1007/BF01093718. doi: 10.1007/BF01093718 |
[36] | S. Samko, Denseness of the spaces $\Phi_V$ of Lizorkin type in the mixed $L^{\overline p}(\bf{R}^n)$-spaces, Stud. Math., 113 (1995), 199–210. |
[37] | A. A. Kilbas, J. J. Trujillo, Differential equations of fractional order: Methods, results and problems-I, Appl. Anal., 78 (2001), 153–192. doi: 10.1080/00036810108840931. doi: 10.1080/00036810108840931 |