Research article

Robustness analysis of Cohen-Grossberg neural network with piecewise constant argument and stochastic disturbances

  • Received: 15 November 2023 Revised: 15 December 2023 Accepted: 20 December 2023 Published: 02 January 2024
  • MSC : 34D20

  • Robustness of neural networks has been a hot topic in recent years. This paper mainly studies the robustness of the global exponential stability of Cohen-Grossberg neural networks with a piecewise constant argument and stochastic disturbances, and discusses the problem of whether the Cohen-Grossberg neural networks can still maintain global exponential stability under the perturbation of the piecewise constant argument and stochastic disturbances. By using stochastic analysis theory and inequality techniques, the interval length of the piecewise constant argument and the upper bound of the noise intensity are derived by solving transcendental equations. In the end, we offer several examples to illustrate the efficacy of the findings.

    Citation: Tao Xie, Wenqing Zheng. Robustness analysis of Cohen-Grossberg neural network with piecewise constant argument and stochastic disturbances[J]. AIMS Mathematics, 2024, 9(2): 3097-3125. doi: 10.3934/math.2024151

    Related Papers:

  • Robustness of neural networks has been a hot topic in recent years. This paper mainly studies the robustness of the global exponential stability of Cohen-Grossberg neural networks with a piecewise constant argument and stochastic disturbances, and discusses the problem of whether the Cohen-Grossberg neural networks can still maintain global exponential stability under the perturbation of the piecewise constant argument and stochastic disturbances. By using stochastic analysis theory and inequality techniques, the interval length of the piecewise constant argument and the upper bound of the noise intensity are derived by solving transcendental equations. In the end, we offer several examples to illustrate the efficacy of the findings.



    加载中


    [1] A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inform. Pro. Syst., 25 (2012).
    [2] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic segmentation, IEEE T. Pattern Anal., 2016, 3431–3440.
    [3] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep visuomotor policies, J. Mach. Learn. Res., 17 (2015), 1334–1373.
    [4] E. Domany, J. Hemmen, K. Schulten, Models of neural networks: Temporal aspects of coding and information processing in biological systems, Heidelberg: Springer, 1994. https://doi.org/10.1007/978-1-4612-4320-5
    [5] S. Arik, Global robust stability analysis of neural networks with discrete time delays, Chaos Soliton. Fract., 26 (2005), 1407–1414. https://doi.org/10.1016/j.chaos.2005.03.025 doi: 10.1016/j.chaos.2005.03.025
    [6] Y. Zhao, H. Gao, S. Mou, Asymptotic stability analysis of neural networks with successive time delay components, Neurocomputing, 71 (2008), 2848–2856. https://doi.org/10.1016/j.neucom.2007.08.015 doi: 10.1016/j.neucom.2007.08.015
    [7] Z. G. Zeng, C. J. Fu, X. X. Liao, Stability analysis of neural networks with infinite time-varying delay, J. Math., 22 (2022), 391–396.
    [8] Y. Shen, J. Wang, Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances, IEEE T. Neural Net. Lear., 23 (2012), 87–96. https://doi.org/10.1109/TNNLS.2011.2178326 doi: 10.1109/TNNLS.2011.2178326
    [9] S. Zhu, Y. Shen, Robustness analysis for connection weight matrices of global exponential stable time varying delayed recurrent neural networks, Neurocomputing, 4 (2013), 220–226. https://doi.org/10.1016/j.neucom.2013.01.006 doi: 10.1016/j.neucom.2013.01.006
    [10] J. E. Zhang, Robustness analysis of global exponential stability of nonlinear systems with deviating argument and stochastic disturbance, IEEE Access, 5 (2017), 13446–13454. https://doi.org/10.1109/ACCESS.2017.2727500 doi: 10.1109/ACCESS.2017.2727500
    [11] H. Zhang, T. Li, S. Fei, Synchronization for an array of coupled cohen-grossberg neural networks with time-varying delay, Math. Probl. Eng., 2011 (2011). https://doi.org/10.1155/2011/831695 doi: 10.1155/2011/831695
    [12] X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simulat., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010
    [13] X. Li, H. Wu, J. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385–397. https://doi.org/10.1016/j.apm.2022.10.051 doi: 10.1016/j.apm.2022.10.051
    [14] Q. Gan, R. Xu, X. Kang, Synchronization of chaotic neural networks with mixed time delays, Commun. Nonlinear Sci., 16 (2011), 966–974. https://doi.org/10.1016/j.cnsns.2010.04.036 doi: 10.1016/j.cnsns.2010.04.036
    [15] L. Wang, Y. Zhou, D. Xu, Q. Lai, Fixed-/preassigned-time stability control of chaotic power systems, Int. J. Bifurcat. Chaos, 33 (2023), 2350110. https://doi.org/10.1142/S0218127423501109 doi: 10.1142/S0218127423501109
    [16] X. Hu, L. Wang, C. K. Zhang, Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control, Sci. China Inform. Sci., 66 (2023), 152204. https://doi.org/10.1007/s11432-022-3633-9 doi: 10.1007/s11432-022-3633-9
    [17] M. A. Cohen, S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Syst. Man Cybern., 13 (1983), 815–826. https://doi.org/10.1109/TSMC.1983.6313075 doi: 10.1109/TSMC.1983.6313075
    [18] W. Lu, T. Chen, New conditions on global stability of cohen-grossberg neural networks, Neural Comput., 15 (2003), 1173. https://doi.org/10.1162/089976603765202703 doi: 10.1162/089976603765202703
    [19] K. Gopalsamy, Global asymptotic stability in a periodic Lotka-Volterra system, J. Aust. Math. Soc. B, 27 (1985), 66–72. https://doi.org/10.1017/S0334270000004768 doi: 10.1017/S0334270000004768
    [20] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, P. Natl. A. Sci., 79 (1984), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554 doi: 10.1073/pnas.79.8.2554
    [21] L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE T. Circuits-I, 35 (1988), 1257–1272. https://doi.org/10.1109/31.7600 doi: 10.1109/31.7600
    [22] L. O. Chua, L. Yang, Cellular neural networks: Application, IEEE T. Circuits-I, 35 (1988), 1273–1290. https://doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [23] T. Roska, L. O. Chua, Cellular neural networks with nonlinear and delay-type template elements and non-uniform grids, Int. J. Circ. Theor. App., 20 (1992), 469–481. https://doi.org/10.1002/cta.4490200504 doi: 10.1002/cta.4490200504
    [24] L. Wang, X. Zou, Exponential stability of Cohen Grossberg neural networks, Neural Networks, 15 (2002), 415–422. https://doi.org/10.1016/S0893-6080(02)00025-4 doi: 10.1016/S0893-6080(02)00025-4
    [25] S. Arik, Z. Orman, Global stability analysis of cohen-grossberg neural networks with time varying delays, Phys. Lett. A, 341 (2005), 410–421. https://doi.org/10.1016/j.physleta.2005.04.095 doi: 10.1016/j.physleta.2005.04.095
    [26] R. Li, J. Cao, Fixed-time stabilization control of reaction-diffusion Cohen-Grossberg neural networks, 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 2017, 4328–4333. https://doi.org/10.1109/CCDC.2017.7979259
    [27] H. Xiang, J. Cao, Exponential stability of periodic solution to Cohen-Grossberg-type BAM networks with time-varying delays, Neurocomputing, 72 (2009), 1702–1711. https://doi.org/10.1016/j.neucom.2008.07.006 doi: 10.1016/j.neucom.2008.07.006
    [28] Y. Li, X. Chen, L. Zhao, Stability and existence of periodic solutions to delayed Cohen-Grossberg BAM neural networks with impulses on time scales, Neurocomputing, 72 (2009), 1621–630. https://doi.org/10.1016/j.neucom.2008.08.010 doi: 10.1016/j.neucom.2008.08.010
    [29] J. Yu, C. Hu, H. Jiang, Z. Teng, Exponential synchronization of cohen-grossberg neural networks via periodically intermittent control, Neurocomputing, 74 (2011), 1776–1782. https://doi.org/10.1016/j.neucom.2011.02.015 doi: 10.1016/j.neucom.2011.02.015
    [30] Y. Shi, J. Cao, Finite-time synchronization of memristive Cohen-Grossberg neural networks with time delays, Neurocomputing, 15 (2020), 159–167. https://doi.org/10.1016/j.neucom.2019.10.036 doi: 10.1016/j.neucom.2019.10.036
    [31] Y. Cheng, Y. Shi, The exponential synchronization and asymptotic synchronization of quaternion-valued memristor-based Cohen-Grossberg neural networks with time-varying delays, Neural Process. Lett., 55 (2023), 6637–6656. https://doi.org/10.1007/s11063-023-11152-0 doi: 10.1007/s11063-023-11152-0
    [32] Q. Song, Z. Wang, Stability analysis of impulsive stochastic cohen-grossberg neural networks with mixed time delays, Phys. A, 387 (2008), 3314–3326. https://doi.org/10.1016/j.physa.2008.01.079 doi: 10.1016/j.physa.2008.01.079
    [33] X. Li, X. Fu, Global asymptotic stability of stochastic cohen-grossberg-type bam neural networks with mixed delays: An lmi approach, J. Comput. Appl. Math., 235 (2011), 3385–3394. https://doi.org/10.1016/j.cam.2010.10.035 doi: 10.1016/j.cam.2010.10.035
    [34] Q. Zhu, X. Li, Exponential and almost sure exponential stability of stochastic fuzzy delayed cohen-grossberg neural networks, Fuzzy Set. Syst., 203 (2012), 74–94. https://doi.org/10.1016/j.fss.2012.01.005 doi: 10.1016/j.fss.2012.01.005
    [35] K. L. Cooke, J. Wiener, Retarded diferential equations with piecewise constant delays, J. Math. Anal. Appl., 99 (1984), 265–297. https://doi.org/10.1016/0022-247X(84)90248-8 doi: 10.1016/0022-247X(84)90248-8
    [36] M. U. Akhmet, On the integral manifolds of the differential equations with piecewise constant argument of generalized type, In R. P. Agarval, & K. Perera (Eds.), Proceedings of the conference on differential and difference equations at the Florida Institute of Technology, Hindawi Publishing Corporation, 2006.
    [37] M. U. Akhmet, On the reduction principle for differential equations with piecewise constant argument of generalized type, J. Math. Anal. Appl., 336 (2007), 646–663. https://doi.org/10.1016/j.jmaa.2007.03.010 doi: 10.1016/j.jmaa.2007.03.010
    [38] M. U. Akhmet, Stability of differential equations with piecewise constant arguments of generalized type, Nonlinear Anal., 68 (2008), 794–803. https://doi.org/10.1016/j.na.2006.11.037 doi: 10.1016/j.na.2006.11.037
    [39] M. U. Akhmet, Almost periodic solutions of differential equations with piecewise constant argument of generalized type, Nonlinear Anal.-Hybri., 2 (2008), 456–467. https://doi.org/10.1016/j.nahs.2006.09.002 doi: 10.1016/j.nahs.2006.09.002
    [40] M. U. Akhmet, D. Arugaslan, E. YiLmaz, Stability in cellular neural networks with a piecewise constant argument, J. Comput. Appl. Math., 233 (2010), 2365–2373. https://doi.org/10.1016/j.cam.2009.10.021 doi: 10.1016/j.cam.2009.10.021
    [41] M. U. Akhmet, D. Aruğaslan, E. Yılmaz, Stability analysis of recurrent neural networks with piecewise constant argument of generalized type, Neural Networks, 7 (2010), 805–811. https://doi.org/10.1016/j.neunet.2010.05.006 doi: 10.1016/j.neunet.2010.05.006
    [42] M. U. Akhmet, E. Yilmaz, Impulsive Hopfield-type neural network system with piecewise constant argument, Nonlinear Anal.-Real, 11 (2010), 2584–2593. https://doi.org/10.1016/j.nonrwa.2009.09.003 doi: 10.1016/j.nonrwa.2009.09.003
    [43] G. Bao, S. Wen, Z. Zeng, Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type, Neural Networks, 33 (2012), 32–41. https://doi.org/10.1016/j.neunet.2012.04.003 doi: 10.1016/j.neunet.2012.04.003
    [44] Y. Shen, J. Wang, Robustness of global exponential stability of nonlinear systems With random disturbances and time delays, IEEE T. Syst. Man Cy.-S., 2016, 1157–1166. https://doi.org/10.1109/TSMC.2015.2497208
    [45] C. Wu, J. Hu, Y. Li, Robustness analysis of Hybrid stochastic neural networks with neutral terms and time-varying delays, Discrete Dyn. Nat. Soc., 2015 (2015), 1–12. https://doi.org/10.1155/2015/278571 doi: 10.1155/2015/278571
    [46] C. M. Wu, L. N. Jiang, Robustness analysis of neutral BAMNN with time delays, IEEE International Conference of Safety Produce Informatization, 2018,911–919.
    [47] X. Mao, Stochastic differential equations and applications, 2 Eds, Harwood: Chichester, 2007. https://doi.org/10.1533/9780857099402
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(729) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog