Cardiovascular disease (CVD) detection using deep learning (DL) includes leveraging advanced neural network (NN) models to analyze medical data, namely imaging, electrocardiograms (ECGs), and patient records. This study introduces a new Nature Inspired Metaheuristic Algorithm with Deep Learning for Healthcare Data Analysis (NIMADL-HDA) technique. The NIMADL-HDA technique examines healthcare data for the recognition and classification of CVD. In the presented NIMADL-HDA technique, Z-score normalization was initially performed to normalize the input data. In addition, the NIMADL-HDA method made use of a barnacle mating optimizer (BMO) for the feature selection (FS) process. For healthcare data classification, a convolutional long short-term memory (CLSTM) model was employed. At last, the prairie dog optimization (PDO) algorithm was exploited for the optimal hyperparameter selection procedure. The experimentation outcome analysis of the NIMADL-HDA technique was verified on a benchmark healthcare dataset. The obtained outcomes stated that the NIMADL-HDA technique reached an effectual performance over other models. The NIMADL-HDA method provides an adaptable and sophisticated solution for healthcare data analysis, aiming to improve the interpretability and accuracy of the algorithm in terms of medical applications.
Citation: Hanan T. Halawani, Aisha M. Mashraqi, Yousef Asiri, Adwan A. Alanazi, Salem Alkhalaf, Gyanendra Prasad Joshi. Nature-Inspired Metaheuristic Algorithm with deep learning for Healthcare Data Analysis[J]. AIMS Mathematics, 2024, 9(5): 12630-12649. doi: 10.3934/math.2024618
Cardiovascular disease (CVD) detection using deep learning (DL) includes leveraging advanced neural network (NN) models to analyze medical data, namely imaging, electrocardiograms (ECGs), and patient records. This study introduces a new Nature Inspired Metaheuristic Algorithm with Deep Learning for Healthcare Data Analysis (NIMADL-HDA) technique. The NIMADL-HDA technique examines healthcare data for the recognition and classification of CVD. In the presented NIMADL-HDA technique, Z-score normalization was initially performed to normalize the input data. In addition, the NIMADL-HDA method made use of a barnacle mating optimizer (BMO) for the feature selection (FS) process. For healthcare data classification, a convolutional long short-term memory (CLSTM) model was employed. At last, the prairie dog optimization (PDO) algorithm was exploited for the optimal hyperparameter selection procedure. The experimentation outcome analysis of the NIMADL-HDA technique was verified on a benchmark healthcare dataset. The obtained outcomes stated that the NIMADL-HDA technique reached an effectual performance over other models. The NIMADL-HDA method provides an adaptable and sophisticated solution for healthcare data analysis, aiming to improve the interpretability and accuracy of the algorithm in terms of medical applications.
[1] | M. A. Qureshi, K. N. Qureshi, G. Jeon, F. Piccialli, Deep learningbased ambient assisted living for self-management of cardiovascular conditions, Neural Comput. Appl., 34 (2022), 10449–10467. https://doi.org/10.1007/s00521-020-05678-w doi: 10.1007/s00521-020-05678-w |
[2] | W. A. W. A. Bakar, N. L. N. B. Josdi, M. B. Man, M. A. B. Zuhairi, A review: Heart disease prediction in machine learning & deep learning, 19th IEEE Int. Colloq. Signal Process. Appl. (CSPA), 2009. https://doi.org/10.1109/CSPA57446.2023.10087837 |
[3] | P. Wang, Z. Lin, X. Yan, Z. Chen, M. Ding, Y. Song, et al., A wearable ECG monitor for deep learning based real-time cardiovascular disease detection, 2022, arXiv: 2201.10083, https://doi.org/10.48550/arXiv.2201.10083 |
[4] | Y. A. Z. A. Fajri, W. Wiharto, E. Suryani, Hybrid model feature selection with the bee swarm optimization method and Q-learning on the diagnosis of coronary heart disease, Information, 14 (2022), 1–15. https://doi.org/10.3390/info14010015 doi: 10.3390/info14010015 |
[5] | I. S. Brites, L. M. Silva, J. L. Barbosa, S. J. Rigo, S. D. Correia, V. R. Leithardt, Machine learning and IoT applied to cardiovascular diseases identification through heart sounds: A literature review, Informatics, 8 (2021), 73. https://doi.org/10.3390/informatics8040073 doi: 10.3390/informatics8040073 |
[6] | U. Nagavelli, D. Samanta, P. Chakraborty, Machine learning technology-based heart disease detection models, J. Healthcare Eng., 2022 (2022), Article ID 7351061. https://doi.org/10.1155/2022/7351061 doi: 10.1155/2022/7351061 |
[7] | C. Kim, G. Lee, H. Oh, G. Jeong, S. W. Kim, E. J. Chun, et al., A deep learning–based automatic analysis of cardiovascular borders on chest radiographs of valvular heart disease: Development/external validation, Eur. Radiol., 32 (2022), 1558–1569, https://doi.org/10.1007/s00330-021-08296-9 doi: 10.1007/s00330-021-08296-9 |
[8] | B. Kolukisa, B. Bakir-Gungor, Ensemble feature selection and classification methods for machine learning-based coronary artery disease diagnosis, Comput. Stand. Inter., 84, 1–11. https://doi.org/10.1016/j.csi.2022.103706 |
[9] | M. K. Malnajjar, S. S. Abu-Naser, Heart Sounds Analysis and Classification for Cardiovascular Diseases Diagnosis Using Deep Learning, 2022. |
[10] | P. K. Shrivastava, M. Sharma, P. Sharma, A. Kumar, HCBiLSTM: A hybrid model for predicting heart disease using CNN and BiLSTM algorithms, Meas. Measurement: Sensors, 25 (2023), 100657. https://doi.org/10.1016/j.measen.2022.100657 doi: 10.1016/j.measen.2022.100657 |
[11] | A. Khanna, P. Selvaraj, D. Gupta, T. H. Sheikh, P. K. Pareek, V. Shankar, Internet of things and deep learning enabled healthcare disease diagnosis using biomedical electrocardiogram signals, Expert Syst., 40 (2021), 1–15, https://doi.org/10.1111/exsy.12864 doi: 10.1111/exsy.12864 |
[12] | A. Rath, D. Mishra, G. Panda, S. C. Satapathy, Heart disease detection using deep learning methods from imbalanced ECG samples, Biomed. Signal Proces., 68 (2021), 102820. https://doi.org/10.1016/j.bspc.2021.102820 doi: 10.1016/j.bspc.2021.102820 |
[13] | S. Iftikhar, M. Golec, D. Chowdhury, S. S. Gill, S. Uhlig, FogDLearner: A deep learning-based cardiac health diagnosis framework using fog computing, 2022 Australasian Computer Science Week, 2022. https://doi.org/10.1145/3511616.3513108 |
[14] | S. Ahmad, M. Z. Asghar, F. M. Alotaibi, Y. D. Alotaibi, Diagnosis of cardiovascular disease using deep learning technique, Soft Comput., 27 (2023), 8971–8990. https://doi.org/10.1007/s00500-022-07788-0 doi: 10.1007/s00500-022-07788-0 |
[15] | S. Hussain, S. K. Nanda, S. Barigidad, S. Akhtar, M. Suaib, N. K. Ray, Novel deep learning architecture for predicting heart disease using CNN. 19th OITS international conference on information technology (OCIT), 2021, IEEE. https://doi.org/10.1109/OCIT53463.2021.00076 |
[16] | H. Bensenane, D. Aksa, F. W. Omari, A. Rahmoun, A deep learning-based cardio-vascular disease diagnosis system, Indones. J. Electr. Eng. Comput. Sci., 25 (2022), 963–971. https://doi.org/10.11591/ijeecs.v25.i2.pp963-971 doi: 10.11591/ijeecs.v25.i2.pp963-971 |
[17] | F. Ali, S. El-Sappagh, S. M. R. Islam, D. Kwak, A. Ali, M. Imran, et al., A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion, Inform. Fusion, 63 (2020), 208–222. https://doi.org/10.1016/j.inffus.2020.06.008 doi: 10.1016/j.inffus.2020.06.008 |
[18] | A. Najafi, A. Nemati, M. Ashrafzadeh, S. H. Zolfani, Multiple-criteria decision making, feature selection, and deep learning: A golden triangle for heart disease identification, Eng. Appl. Artif. Intel., 125 (2023), 1–18. https://doi.org/10.1016/j.engappai. 2023.106662 doi: 10.1016/j.engappai.2023.106662 |
[19] | M. H. Sulaiman, Z. Mustaffa, Optimal chiller loading solution for energy conservation using Barnacles Mating Optimizer algorithm, Results Control Optim., 7 (2022), 1–12. https://doi.org/10.1016/j.rico.2022.100109 doi: 10.1016/j.rico.2022.100109 |
[20] | M. Mafarja, T. Thaher, M. A. Al-Betar, J. Too, M. A. Awadallah, I. Abu Doush, et al., Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning, Appl. Intel., 53 (2023), 18715–18757. https://doi.org/10.1007/s10489-022-04427-x doi: 10.1007/s10489-022-04427-x |
[21] | M. Chen, H. Yang, B. Mao, K. Xie, C. Chen, Y. Dong, An ensemble forecast wind field correction model with multiple factors and Spatio-Temporal features, Atmosphere, 14 (2023), 1–23. https://doi.org/10.3390/atmos14111650 doi: 10.3390/atmos14111650 |
[22] | H. Yu, Y. Wang, H. Jia, L. Abualigah, Modified prairie dog optimization algorithm for global optimization and constrained engineering problems, Math. Biosci. Eng., 20 (2023), 19086–19132. https://doi.org/10.3934/mbe.2023844 doi: 10.3934/mbe.2023844 |
[23] | Heart Disease Dataset. Available from: https://www.kaggle.com/datasets/sid321axn/heart-statlog-cleveland-hungary-final |
[24] | M. Obayya, J. M. Alsamri, M. A. Al-Hagery, A. Mohammed, M. A. Hamza, Automated cardiovascular disease diagnosis using Honey Badger Optimization with modified deep learning model, IEEE Access, 11 (2023), 64272–64281. https://doi.org/10.1109/ACCESS.2023. 3286661 doi: 10.1109/ACCESS.2023.3286661 |
[25] | A. K. Dubey, K. Choudhary, R. Sharma, Predicting heart disease based on influential features with machine learning, Intell. Autom. Soft Comput., 30 (2021), 929–943, https://doi.org/10.32604/iasc.2021.018382 doi: 10.32604/iasc.2021.018382 |
[26] | N. Mary, B. Khan, A. A. Asiri, F. Muhammad, S. Alqhtani, K. M. Mehdar, et al., Investigating of classification algorithms for heart disease risk prediction, J. Intell. Med. Healthcare, 1 (2022), 11–31. https://doi.org/10.32604/jimh.2022.030161 doi: 10.32604/jimh.2022.030161 |