Research article Special Issues

Image encryption with leveraging blockchain-based optimal deep learning for Secure Disease Detection and Classification in a smart healthcare environment

  • Received: 25 January 2024 Revised: 29 March 2024 Accepted: 12 April 2024 Published: 08 May 2024
  • MSC : 11Y40

  • Blockchain (BC) in healthcare can be used for sharing medical records and secure storage and other confidential data. Deep learning (DL) assists in disease recognition through image analysis, specifically in detecting medical conditions from images. Image encryption ensures the security and privacy of medical images by encrypting the image before sharing or storage. The combination of image encryption, BC, and DL provides an efficient and secure system for medical image analysis and disease detection in healthcare. Therefore, we designed a new BC with an Image Encryption-based Optimal DL for Secure Disease Detection and Classification (BIEODL-SDDC) technique. The presented BIEODL-SDDC technique enables the secure sharing of medical images via encryption and BC technology with a DL-based disease classification process. Furthermore, the medical image encryption process took place using the ElGamal Encryption technique with a giraffe kicking optimization (GKO) algorithm-based key generation process. In addition, BC-based smart contracts (SCs) were used for the secure sharing of medical images. For the disease detection process, the BIEODL-SDDC technique encompassed EfficientNet-B7-CBAM-based feature extraction, Adam optimizer, and a fully connected neural network (FCNN). The experimental validation of the BIEODL-SDDC technique was tested on medical image datasets and the outcome highlighted an enhanced accuracy outcome of 94.81% over other techniques.

    Citation: Fatma S. Alrayes, Latifah Almuqren, Abdullah Mohamed, Mohammed Rizwanullah. Image encryption with leveraging blockchain-based optimal deep learning for Secure Disease Detection and Classification in a smart healthcare environment[J]. AIMS Mathematics, 2024, 9(6): 16093-16115. doi: 10.3934/math.2024779

    Related Papers:

  • Blockchain (BC) in healthcare can be used for sharing medical records and secure storage and other confidential data. Deep learning (DL) assists in disease recognition through image analysis, specifically in detecting medical conditions from images. Image encryption ensures the security and privacy of medical images by encrypting the image before sharing or storage. The combination of image encryption, BC, and DL provides an efficient and secure system for medical image analysis and disease detection in healthcare. Therefore, we designed a new BC with an Image Encryption-based Optimal DL for Secure Disease Detection and Classification (BIEODL-SDDC) technique. The presented BIEODL-SDDC technique enables the secure sharing of medical images via encryption and BC technology with a DL-based disease classification process. Furthermore, the medical image encryption process took place using the ElGamal Encryption technique with a giraffe kicking optimization (GKO) algorithm-based key generation process. In addition, BC-based smart contracts (SCs) were used for the secure sharing of medical images. For the disease detection process, the BIEODL-SDDC technique encompassed EfficientNet-B7-CBAM-based feature extraction, Adam optimizer, and a fully connected neural network (FCNN). The experimental validation of the BIEODL-SDDC technique was tested on medical image datasets and the outcome highlighted an enhanced accuracy outcome of 94.81% over other techniques.



    加载中


    [1] P. K. Ghosh, A. Chakraborty, M. Hasan, K. Rashid, A. H. Siddique, Blockchain application in healthcare systems: A Review, Systems, 11 (2023), 38. https://doi.org/10.3390/systems11010038 doi: 10.3390/systems11010038
    [2] S. Sai, V. Chamola, K. K. R. Choo, B. Sikdar, J. J. Rodrigues, Confluence of Blockchain and Artificial Intelligence Technologies for Secure and Scalable Healthcare Solutions: A Review, IEEE Internet Things, 10 (2022), 5873–5897. https://doi.org/10.1109/JIOT.2022.3232793 doi: 10.1109/JIOT.2022.3232793
    [3] A. I. Taloba, A. Elhadad, A. Rayan, R. M. Abd El-Aziz, M. Salem, A. A. Alzahrani, et al., A blockchain-based hybrid platform for multimedia data processing in IoT-Healthcare, Alex. Eng. J., 65 (2023), 263–274. https://doi.org/10.1016/j.aej.2022.09.031 doi: 10.1016/j.aej.2022.09.031
    [4] V. Merlo, G. Pio, F. Giusto, M. Bilancia, On the exploitation of the blockchain technology in the healthcare sector: A systematic review, Expert Syst. Appl., 213 (2022), 118897. https://doi.org/10.1016/j.aej.2022.09.031 doi: 10.1016/j.aej.2022.09.031
    [5] A. I. Taloba, A. Elhadad, A. Rayan, R. M. Abd El-Aziz, M. Salem, A. A. Alzahrani, et al., A blockchain-based hybrid platform for multimedia data processing in IoT-Healthcare, Alex. Eng. J., 65 (2023), 263–274. https://doi.org/10.1016/j.aej.2022.09.031 doi: 10.1016/j.aej.2022.09.031
    [6] M. Wang, H. Zhang, H. Wu, G. Li, K. Gai, Blockchain-based Secure Medical Data Management and Disease Prediction, In Proceedings of the Fourth ACM International Symposium on Blockchain and Secure Critical Infrastructure, (pp 71–82), 2022. https://doi.org/10.1145/3494106.3528678
    [7] B. A. Dedeturk, A. Soran, B. Bakir-Gungor, Blockchain for genomics and healthcare: A literature review, current status, classification and open issues, PeerJ, 9 (2021), e12130. https://doi.org/10.7717/peerj.12130 doi: 10.7717/peerj.12130
    [8] S. Ramzan, A. Aqdus, V. Ravi, D. Koundal, R. Amin, M. A. Al Ghamdi, Healthcare applications using blockchain technology: Motivations and challenges, IEEE Transactions on Engineering Management, 70 (2022), 2874–2890. https://doi.org/10.1109/TEM.2022.3189734 doi: 10.1109/TEM.2022.3189734
    [9] P. Tagde, S. Tagde, T. Bhattacharya, P. Tagde, H. Chopra, R. Akter, et al., Blockchain and artificial intelligence technology in e-Health, Environ. Sci. Pollut. R., 28 (2021), 52810–52831. https://doi.org/10.1007/s11356-021-16223-0 doi: 10.1007/s11356-021-16223-0
    [10] R. Shinde, S. Patil, K. Kotecha, V. Potdar, G. Selvachandran, A. Abraham, Securing AI-based Healthcare Systems using Blockchain Technology: A State-of-the-Art Systematic Literature Review and Future Research Directions, 2022, arXiv preprint arXiv: 2206.04793. https://doi.org/10.1002/ett.4884
    [11] A. Goel, S. Neduncheliyan, An intelligent blockchain strategy for decentralised healthcare framework, Peer Peer Netw. Appl., 16 (2023), 846–857. https://doi.org/10.1007/s12083-022-01429-x doi: 10.1007/s12083-022-01429-x
    [12] D. Jadav, N. K. Jadav, R. Gupta, S. Tanwar, O. Alfarraj, A. Tolba, et al., A trustworthy healthcare management framework using amalgamation of AI and blockchain network, Mathematics, 11 (2023), 637. https://doi.org/10.1007/s12083-022-01429-x doi: 10.1007/s12083-022-01429-x
    [13] I. V. Pustokhina, D. A. Pustokhin, K. Shankar, Blockchain-based secure data sharing scheme using image steganography and encryption techniques for telemedicine applications, In Wearable Telemedicine Technology for the Healthcare Industry, (pp. 97–108). Academic Press, 2022. https://doi.org/10.1007/s12083-022-01429-x
    [14] Y. Wu, L. Zhang, S. Berretti, S. Wan, Medical image encryption by content-aware dna computing for secure healthcare, IEEE T. Ind, Inform., 19 (2022), 2089–2098. https://doi.org/10.1109/TII.2022.3194590 doi: 10.1109/TII.2022.3194590
    [15] A. A. Noman, M. Rahaman, T. H. Pranto, R. M. Rahman, Blockchain for medical collaboration: A federated learning-based approach for multi-class respiratory disease classification, Healthcare Analytics, 3 (2023), 100135. https://doi.org/10.1016/j.health.2023.100135 doi: 10.1016/j.health.2023.100135
    [16] B. Ren, L. T. Yang, Q. Zhang, J. Feng, X. Nie, Blockchain-Powered Tensor Meta-Learning-Driven Intelligent Healthcare System with IoT Assistance, IEEE T. Netw. Sci. Eng., 10 (2022), 2503–2513. https://doi.org/10.1016/j.health.2023.100135 doi: 10.1016/j.health.2023.100135
    [17] P. D. Singh, R. Kaur, G. Dhiman, G. R. Bojja, BOSS: A new QoS aware blockchain assisted framework for secure and smart healthcare as a service, Expert Syst., 40 (2023), e12838. https://doi.org/10.1111/exsy.12838 doi: 10.1111/exsy.12838
    [18] A. Ala, V. Simic, D. Pamucar, N. Bacanin, Enhancing patient information performance in internet of things-based smart healthcare system: Hybrid artificial intelligence and optimization approaches, Eng. Appl. Artif. Intell., 131 (2024), 107889. https://doi.org/10.1016/j.engappai.2024.107889 doi: 10.1016/j.engappai.2024.107889
    [19] A. Ala, A. H. Sadeghi, M. Deveci, D. Pamucar, Improving smart deals system to secure human-centric consumer applications: Internet of things and Markov logic network approaches, Electron. Commer. Res., 2023, 1–27.
    [20] A. Ala, V. Simic, D. Pamucar, E. B. Tirkolaee, Appointment scheduling problem under fairness policy in healthcare services: Fuzzy ant lion optimizer, Expert Syst. Appl., 207 (2022), 117949. https://doi.org/10.1016/j.engappai.2024.107889 doi: 10.1016/j.engappai.2024.107889
    [21] F. S. Alrayes, S. S. Alotaibi, K. A. Alissa, M. Maashi, A. Alhogail, N. Alotaibi, et al., Artificial intelligence-based secure communication and classification for Drone-Enabled emergency monitoring systems, Drones, 6 (2022), 222. https://doi.org/10.1016/j.engappai.2024.107889 doi: 10.1016/j.engappai.2024.107889
    [22] A. Behura, M. Srinivas, M. R. Kabat, Giraffe kicking optimization algorithm provides efficient routing mechanism in the field of vehicular ad hoc networks, J. Amb. Intel. Hum. Comp., 13 (2022), 3989–4008. https://doi.org/10.1016/j.engappai.2024.107889 doi: 10.1016/j.engappai.2024.107889
    [23] R. Kumar, W. Wang, J. Kumar, T. Yang, A. Khan, W. Ali, et al., An integration of blockchain and AI for secure data sharing and detection of CT images for the hospitals, Comput. Med. Imag. Grap., 87 (2021), 101812. https://doi.org/10.1016/j.engappai.2024.107889 doi: 10.1016/j.engappai.2024.107889
    [24] X. Du, L. Si, X. Jin, P. Li, Z. Yun, K. Gao, Classification of plug seedling quality by improved convolutional neural network with an attention mechanism, Front. Plant Sci., 13 (2022). https://doi.org/10.1016/j.engappai.2024.107889 doi: 10.1016/j.engappai.2024.107889
    [25] A. Kumar, S. Sarkar, C. Pradhan, Malaria disease detection using cnn technique with sgd, rmsprop and adam optimizers, In Deep learning techniques for biomedical and health informatics, (pp. 211–230), Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-33966-1_11
    [26] J. Lee, J. Kim, I. Kim, K. Han, Cyber threat detection based on artificial neural networks using event profiles, IEEE Access, 7 (2019), 165607–165626. https://doi.org/10.1007/978-3-030-33966-1_11 doi: 10.1007/978-3-030-33966-1_11
    [27] P. Leavey, A. Sengupta, D. Rakheja, O. Daescu, H. B. Arunachalam, R. Mishra, Osteosarcoma data from UT Southwestern/UT Dallas for Viable and Necrotic Tumor Assessment [Data set], Cancer Imaging Arch, 2019, 14.
    [28] T. Veeramakali, R. Siva, B. Sivakumar, P. C. Senthil Mahesh, N. Krishnaraj, An intelligent internet of things-based secure healthcare framework using blockchain technology with an optimal deep learning model, The Journal of Supercomputing, 2021, 1–21. https://doi.org/10.1007/978-3-030-33966-1_11 doi: 10.1007/978-3-030-33966-1_11
    [29] B. Fakieh, A. S. A. M. AL-Ghamdi, M. Ragab, Optimal deep stacked sparse autoencoder based osteosarcoma detection and classification model, Healthcare, 10 (2022), 1040. https://doi.org/10.3390/healthcare10061040 doi: 10.3390/healthcare10061040
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(575) PDF downloads(50) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog