Research article Special Issues

Evolutionary Khovanov homology

  • Received: 28 July 2024 Revised: 21 August 2024 Accepted: 26 August 2024 Published: 10 September 2024
  • MSC : 55N31, 57K10, 57K18

  • Knot theory, a subfield in geometric topology, is the study of the embedding of closed circles into three-dimensional Euclidean space, motivated by the ubiquity of knots in daily life and human civilization. However, focusing on topology, the current knot theory lacks metric analysis. As a result, the application of knot theory has remained largely primitive and qualitative. Motivated by the need of quantitative knot data analysis (KDA), this work implemented the evolutionary Khovanov homology (EKH) to facilitate a multiscale KDA of real-world data. EKH considers specific metrics to filter links, capturing multiscale topological features of knot configurations beyond traditional invariants. It is demonstrated that EKH can reveal non-trivial knot invariants at appropriate scales, even when the global topological structure of a knot is simple. The proposed EKH holds great potential for KDA and machine learning applications related to knot-type data, in contrast to other data forms, such as point cloud data and data on manifolds.

    Citation: Li Shen, Jian Liu, Guo-Wei Wei. Evolutionary Khovanov homology[J]. AIMS Mathematics, 2024, 9(9): 26139-26165. doi: 10.3934/math.20241277

    Related Papers:

  • Knot theory, a subfield in geometric topology, is the study of the embedding of closed circles into three-dimensional Euclidean space, motivated by the ubiquity of knots in daily life and human civilization. However, focusing on topology, the current knot theory lacks metric analysis. As a result, the application of knot theory has remained largely primitive and qualitative. Motivated by the need of quantitative knot data analysis (KDA), this work implemented the evolutionary Khovanov homology (EKH) to facilitate a multiscale KDA of real-world data. EKH considers specific metrics to filter links, capturing multiscale topological features of knot configurations beyond traditional invariants. It is demonstrated that EKH can reveal non-trivial knot invariants at appropriate scales, even when the global topological structure of a knot is simple. The proposed EKH holds great potential for KDA and machine learning applications related to knot-type data, in contrast to other data forms, such as point cloud data and data on manifolds.



    加载中


    [1] M. F. Atiyah, The geometry and physics of knots, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511623868
    [2] O. Lukin, F. Vögtle, Knotting and threading of molecules: chemistry and chirality of molecular knots and their assemblies, Angew. Chem. Int. Edit., 44 (2005), 1456–1477. https://doi.org/10.1002/anie.200460312 doi: 10.1002/anie.200460312
    [3] K. Murasugi, Knot theory and its applications, Boston: Birkhauser, 1996. https://doi.org/10.1007/978-0-8176-4719-3
    [4] D. Endy, Foundations for engineering biology, Nature, 438 (2005), 449–453. https://doi.org/10.1038/nature04342 doi: 10.1038/nature04342
    [5] Y. Pommier, E. Leo, H. L. Zhang, C. Marchand, DNA topoisomerases and their poisoning by anticancer and antibacterial drugs, Chem. Biol., 17 (2010), 421–433. https://doi.org/10.1016/j.chembiol.2010.04.012 doi: 10.1016/j.chembiol.2010.04.012
    [6] C. C. Adams, The knot book: An elementary introduction to the mathematical theory of knots, Providence: American Mathematical Society, 1994. https://doi.org/10.5860/choice.32-2183
    [7] G. Burde, H. Zieschang, Knots, New York: De Gruyter, 2002. https://doi.org/10.1515/9783110198034
    [8] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, In: Fields Medallists' lectures, Singapore: World Scientific Publishing Company, 1997,448–458. https://doi.org/10.1142/9789812385215_0048
    [9] D. Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol., 2 (2002), 337–370.
    [10] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J., 101 (2000), 359–426. https://doi.org/10.1215/s0012-7094-00-10131-7 doi: 10.1215/s0012-7094-00-10131-7
    [11] D. Goundaroulis, N. Gügümcü, S. Lambropoulou, J. Dorier, A. Stasiak, L. Kauffman, Topological models for open-knotted protein chains using the concepts of knotoids and bonded knotoids, Polymers, 9 (2017), 444. https://doi.org/10.3390/polym9090444 doi: 10.3390/polym9090444
    [12] N. C. H. Lim, S. E. Jackson, Molecular knots in biology and chemistry, J. Phys.: Condens. Matter, 27 (2015), 354101. https://doi.org/10.1088/0953-8984/27/35/354101 doi: 10.1088/0953-8984/27/35/354101
    [13] L. Shen, H. S. Feng, F. L. Li, F. C. Lei, J. Wu, G.-W. Wei, Knot data analysis using multiscale Gauss link integral, in press. https://doi.org/10.26434/chemrxiv-2023-s83vq
    [14] G. Carlsson, Topology and data, Bull. Amer. Math. Soc., 46 (2009), 255–308. https://doi.org/10.1090/s0273-0979-09-01249-x doi: 10.1090/s0273-0979-09-01249-x
    [15] H. Edelsbrunner, J. Harer, Persistent homology–a survey, Contemp. Math., 453 (2008), 257–282. https://doi.org/10.1090/conm/453/08802 doi: 10.1090/conm/453/08802
    [16] Z. X. Cang, G.-W. Wei, Topologynet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLoS Comput. Biol., 13 (2017), e1005690. https://doi.org/10.1371/journal.pcbi.1005690 doi: 10.1371/journal.pcbi.1005690
    [17] J. H. Chen, R. D. Zhao, Y. Y. Tong, G.-W. Wei, Evolutionary de Rham-Hodge method, Discrete Cont. Dyn.-B, 26 (2021), 3785–3821. https://doi.org/10.3934/dcdsb.2020257 doi: 10.3934/dcdsb.2020257
    [18] J. W. Alexander, G. B. Briggs, On types of knotted curves, Ann. Math., 28 (1926), 562–586. https://doi.org/10.2307/1968399 doi: 10.2307/1968399
    [19] K. Reidemeister, Elementare begründung der knotentheorie, Abh. Math. Semin. Univ. Hambg., 5 (1927), 24–32. https://doi.org/10.1007/bf02952507 doi: 10.1007/bf02952507
    [20] L. H. Kauffman, State models and the Jones polynomial, Topology, 26 (1987), 395–407. https://doi.org/10.1016/0040-9383(87)90009-7 doi: 10.1016/0040-9383(87)90009-7
    [21] H. Schubert, Über eine numerische Knoteninvariante, Math. Z., 61 (1954), 245–288. https://doi.org/10.1007/bf01181346 doi: 10.1007/bf01181346
    [22] A. Gibson, Homotopy invariants of Gauss words, Math. Ann., 349 (2011), 871–887. https://doi.org/10.1007/s00208-010-0536-0 doi: 10.1007/s00208-010-0536-0
    [23] V. O. Manturov, Knot theory, 2 Eds., Boca Raton: CRC Press, 2018. https://doi.org/10.1201/9780203710920
    [24] P. B. Kronheimer, T. S. Mrowka, Khovanov homology is an unknot-detector, Publ. Math. IHES, 113 (2011), 97–208. https://doi.org/10.1007/s10240-010-0030-y doi: 10.1007/s10240-010-0030-y
    [25] W. Y. Bi, J. Y. Li, J. Liu, J. Wu, On the Cayley-persistence algebra, 2022, arXiv: 2205.10796.
    [26] P. Dabrowski-Tumanski, J. I. Sulkowska, Topological knots and links in proteins, P. Natl. A. Sci., 114 (2017), 3415–3420. https://doi.org/10.1073/pnas.1615862114 doi: 10.1073/pnas.1615862114
    [27] M. Jamroz, W. Niemyska, E. J. Rawdon, A. Stasiak, K. C. Millett, P. Sułkowski, et al., KnotProt: A database of proteins with knots and slipknots, Nucleic Acids Res., 43 (2015), D306–D314. https://doi.org/10.1093/nar/gku1059 doi: 10.1093/nar/gku1059
    [28] R. Wang, D. D. Nguyen, G.-W. Wei, Persistent spectral graph, Int. J. Numer. Meth. Bio., 36 (2020), e3376. https://doi.org/10.1002/cnm.3376 doi: 10.1002/cnm.3376
    [29] X. Q. Wei, G.-W. Wei, Persistent topological Laplacians–A survey, 2023, arXiv: 2312.07563. https://doi.org/10.26434/chemrxiv-2023-8c9vh
    [30] J. Liu, D. Chen, G.-W. Wei, Persistent interaction topology in data analysis, 2024, arXiv: 2404.11799.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(300) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog