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Abstract: Knot theory, a subfield in geometric topology, is the study of the embedding of closed
circles into three-dimensional Euclidean space, motivated by the ubiquity of knots in daily life and
human civilization. However, focusing on topology, the current knot theory lacks metric analysis. As
a result, the application of knot theory has remained largely primitive and qualitative. Motivated by
the need of quantitative knot data analysis (KDA), this work implemented the evolutionary Khovanov
homology (EKH) to facilitate a multiscale KDA of real-world data. EKH considers specific metrics
to filter links, capturing multiscale topological features of knot configurations beyond traditional
invariants. It is demonstrated that EKH can reveal non-trivial knot invariants at appropriate scales, even
when the global topological structure of a knot is simple. The proposed EKH holds great potential for
KDA and machine learning applications related to knot-type data, in contrast to other data forms, such
as point cloud data and data on manifolds.
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1. Introduction

Knots are interlaced structures formed by tying a piece of rope, string, or other flexible material
and are omnipresent, from practical uses in sailing, climbing, and fishing to decorative purposes in
crafts and art. Knot structures are pervasive, being studied in various fields, including physics [1],
chemistry [2], biology [3], bioengineering [4], and therapeutics [5]. Knot theory is a branch of
mathematics in geometric topology that studies knot invariants and has a long history [6, 7]. The
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most well-known knot invariant is the Jones polynomial [8]. Around year 2000, Khovanov introduced
the Khovanov homology, which provides an algebraic topology approach to knots. Notably, the
graded Euler characteristic of Khovanov homology coincides with the Jones polynomial [9, 10].
Khovanov homology is one of the most significant achievements in knot theory and has stimulated
much development in the past two decades. However, the current knot theory is entirely topological
and lacks metric space analysis. As such, the applications of knot theory are mostly qualitative or
limited to global information about knot types [11, 12].

Recently, multiscale Gauss link integral (mGLI) theory has been proposed for quantitative knot data
analysis (KDA) and knot learning (KL) [13]. MGLI outperforms other methods, including topological
data analysis (TDA), on biomolecular datasets, demonstrating the great promise of KDA and KL [13].
However, mGLI does not offer a topological analysis at various small scales, although it preserves the
global knot topology at a large scale.

Real-world knots often exhibit highly complex geometric structures, while their topological
structures may be relatively simple. For example, the helical structure of DNA or RNA is extremely
intricate, but some helices can be simplified into simpler knot structures through transformations such
as Reidemeister moves. This indicates that characterizing biological knots solely by their topological
structure is often insufficient. On the other hand, considering the geometric details of knots in
biological systems can be overly detailed and may obscure the essential properties of these structures.
Therefore, a balance between geometry and topology must be struck to capture both the essential
geometric details and the fundamental topological structures of knots.

Persistent homology, a powerful method from algebraic topology, facilities TDA and has been
used to capture the topological features of point cloud data by continuously analyzing its topological
structures at different scales [14, 15]. This technique has found widespread applications in various
fields such as biology, materials science, and geographic information systems [16]. The basic idea
involves representing a point cloud as a distribution of points in space and observing the evolution of
its topological structure by systematically changing the geometric scale. A similar multiscale analysis
was also introduced for data on manifolds, called the evolutionary de Rham-Hodge method [17],
a method rooted in differential geometry, algebraic topology, and multiscale analysis for data on
manifolds. These approaches motivate a multiscale knot theory, namely, persistent knot theory. Rooted
in geometric topology, this new approach allows us to embed knot-type data into topological invariants
at various scales, enabling a more nuanced exploration of their geometric properties and topological
characteristics.

In this work, we introduce the concept of evolutionary Khovanov homology (EKH) to investigate
the geometric and topological properties of knots and links in Euclidean space. Specifically, we
explore a filtration of links by considering smoothing transformations of crossings in knots. These
links provide a sequence illustrating the evolution of Khovanov homology, thereby revealing finer
topological structures and geometric shapes of the links. It is worth noting that while the Khovanov
homology of unknotted links is trivial, their evolutionary Khovanov homology may not necessarily be
so (see Examples 3.1 and 3.4). Consequently, evolutionary Khovanov homology offers a promising
framework for characterizing knots or links in real data, which may possess complex structures yet
exhibit simplicity under knot equivalence relations. In addition, we propose two essential filtration
strategies for EKH: distance-based filtration and unzipping filtration. The synergy of these methods
enhances EKH’s analytical power. EKH significantly contributes to the analysis of the knot-type data,

AIMS Mathematics Volume 9, Issue 9, 26139–26165.



26141

such as knots, links, and tangles, compared to point cloud data and data on manifolds. It provides a
new KDA paradigm for real-world data and can be used for knot deep learning (KDL).

The structure of the paper is as follows. In the next section, knot theory, encompassing important
concepts such as knot invariants, Gauss code, the Jones polynomial, and Khovanov homology, is
reviewed. In Section 3, we introduce the concept of evolutionary Khovanov homology and provide
computations and representations of examples. Finally, this paper ends with a conclusion.

2. Knot theory

To establish notations, we review some fundamental concepts of knot theory in this section,
including Reidemeister moves, knot invariants, Gauss code, Kauffman brackets, Jones polynomials,
and Khovanov homology. We aim to present these topics in a self-contained manner. For readers
interested in a more detailed study of knot theory, we recommend the references [6, 7].

2.1. Knot invariant

A knot is an embedding of the circle S 1 into three-dimensional Euclidean space R3 or into the
3D sphere S 3. Sometimes, the knot is required to be piecewise smooth and to have a non-vanishing
derivative on each closed interval.

Two embeddings f , g : N → M of manifolds are called ambient isotopy if there is a continuous map
F : M × [0, 1] → M such that if F0 is the identity map, each Ft : M → M is a homeomorphism, and
F1 ◦ f = g.

Two knots are equivalent if there is an ambient isotopy between them. It is one of the pivotal
challenges in knot theory to study the equivalence classes of knots. This equivalence allows us
to systematically study the properties and characteristics of knots without considering their specific
shapes or spatial positions. Based on this, researchers have developed various knot invariants and
established the topology of knots.

A knot in R3 (resp. S 3) can be projected into the Euclidean plane R2 (resp. S 2). From now on,
unless specifically stated otherwise, we will focus on knots in R3. For knots in S 3, we can provide
analogous descriptions.

A projection p : K → R2 of a knot K is regular if it is injective everywhere, except at a finite
number of crossing points. These crossing points are the projections of double points of the knot,
and should occur only where lines intersect. Moreover, the crossing points contain the information of
overcrossings and undercrossings. Such a projection is commonly referred to as a knot diagram.

It is worth noting that a knot can have different regular projections. Consequently, for a given
knot, we can obtain different knot diagrams. Indeed, the knot diagram is independent of the choice of
projection up to equivalence. Before proceeding, let us recall the Reidemeister moves.

The Reidemeister moves are the following three operations on a small region of the diagram :

(R1) Twist and untwist in either direction;
(R2) Move one loop completely over or under another; and
(R3) Move a string completely over or under a crossing.

Figure 1(a) provides a graphical representation of the Reidemeister moves.
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Figure 1. (a) The three types of Reidemeister moves; (b) The marked diagram of a knot can
be used to obtain the Gauss code; (c) The left is the left-handed crossing, and the right is the
right-handed crossing; (d) The knot with crossings marked by + or −. The corresponding
writhe number (see Section 2.3) is w(L) = 4 − 4 = 0.

Reidemeister et al. have shown that two knot diagrams belonging to the same knot can be
transformed into each other by a sequence of the three Reidemeister moves up to ambient isotopy [18,
19]. Moreover, two knots are equivalent if and only if all their projections are equivalent [7]. This
suggests that the equivalence relation of knots can be established using Reidemeister moves, which are
more user-friendly compared to ambient isotopy. They also facilitate proving whether a quantity is a
knot invariant.

A knot invariant is a quantity defined on knots that remains unchanged under knot equivalence.
The most common knot invariants include tricoloring [20], crossing number [6], bridge number [21],
and the Jones polynomial [8]. However, these knot invariants cannot determine the equivalent class
of knots; indeed, it is even difficult to determine if a knot is the trivial knot. This underscores the
inadequacy of current knot invariants, prompting ongoing efforts to seek new ones. Among these
knot invariants, the Jones polynomial stands out as one of the most successful. It encapsulates
critical information regarding knot topology and structure, including symmetry, crossing distribution,
and complexity. Furthermore, its profound links to fields such as topological quantum field theory
and quantum braid theory in physics underscore its importance in understanding topological phase
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transitions and quantum states.

2.2. Gauss code

The Gauss code represents a knot diagram using a sequence of integer numbers [22]. This
digital representation facilitates recording and understanding of the knot diagram. Moreover, we
can reconstruct the original knot diagram from its Gauss code. This implies that Gauss code holds
significant importance in classifying knots and computing knot invariants.

Given a knot diagram K, one can obtain a Gauss code G(K) as follows:

1) Choose a crossing as the starting point and select a direction to begin from the starting point;
2) Assign the starting crossing a value of 1, and then assign values of 2, 3, and so on to each

subsequent unlabeled crossing along the chosen direction;
3) For each crossing, we assign a sign. If the crossing is an overcrossing, the sign is positive;

otherwise, it is negative.

The integer sequence written down following the aforementioned procedure is what we refer to
as the Gauss code. For example, see Figure 1(b). Starting from 1 and proceeding to 2, we obtain a
sequence of numbers, denoted as 1, 2, 3, 4, 2, 5, 6, 3, 4, 1, 7, 8, 9, 6, 5, 9, 8, 7. By assigning a sign to each
number based on the type of crossing, we get a new sequence of numbers:

+1,−2,+3,−4,+2,+5,−6,−3,+4,−1,+7,+8,−9,+6,−5,+9,−8,−7.

This sequence is the Gauss code for the knot in Figure 1(b).
For a Gauss code C, we can reconstruct a knot diagram D(C). So, the natural question arises: for a

knot diagram K, is the knot diagram D(G(K)) equivalent to K? In general, this is not entirely correct.
To address this issue, people have introduced extended Gauss code. The construction of the extended
Gauss code is similar to the Gauss code, with one key difference in how the signs of the integers are
assigned. When the crossing is right-handed, the integer is assigned a positive value, and when it is
left-handed, the integer is assigned a negative value. For Figure 1(b), by considering the right-handed
or left-handed nature of each crossing, we obtain the extended Gauss code:

+ 1L,−2R,+3R,−4R,+2R,+5L,−6L,−3R,+4R,−1L,

+ 7L,+8R,−9R,+6L,−5L,+9R,−8R,−7L.

In theory, Gauss code helps us examine and understand information about knots, which allows us to
study their properties. In computation, Gauss code can be utilized to calculate various knot invariants,
such as the Jones polynomial, Alexander polynomial, and others. Furthermore, from an algorithmic
perspective, digitizing and processing knot data through the Gauss code are invaluable for computer-
assisted knot research and computation.

2.3. Kauffman bracket and Jones polynomial

In the previous section, we concluded that to study the invariants of knots, it is sufficient to explore
the invariance of knot diagrams under Reidemeister moves. From now on, our attention will directed
toward knot diagrams as we revisit the Kauffman bracket and Jones polynomial associated with them.
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For a crossing, there is a 0-smoothing and a 1-smoothing . The process of smoothing can
be understood as untangling a crossing, as illustrated below.

=⇒ +

=⇒ +

A link is a collection of knots that do not intersect but may be linked (or knotted) together. In
particular, a knot is a link with only one component. If not explicitly stated, the links discussed in this
paper are assumed to be orientable.

Given a knot K and a crossing x of K, we can create links by replacing the crossing x with the
0-smoothing and the 1-smoothing, respectively. Let Knot denote the set of knots, and let Link denote
the set of links. Given a link L, let X(L) denote the set of crossings of L. For each x ∈ X(L), the
smoothing operators at x lead to the 0-smoothing and the 1-smoothing maps ρ0, ρ1 : Link → Link as
L 7→ ρ0(L, x) and L 7→ ρ1(L, x), respectively. In the following construction of the Kauffman bracket,
for an unoriented knot, the smoothing is always performed on the undercrossing .

The Kauffman bracket is a bracket function ⟨−⟩ : Link→ Z[a, a−1] satisfying:

(a) ⟨⃝⟩ = 1;
(b) ⟨⃝ ∪ L⟩ = (−a2 − a−2)⟨L⟩;
(c) ⟨L⟩ = a⟨ρ0(L, x)⟩ + a−1⟨ρ1(L, x)⟩ for any x ∈ X(L).

Here,⃝ denotes the trivial knot.
The Kauffman bracket does always exist, and it is uniquely determined in Z[a, a−1]. Now, let n =

|X(L)| be the number of crossings of L. For each crossing, we have the options of performing 0-
smoothing and 1-smoothing. Thus, we can obtain a total of 2n different smoothing links. Each of these
smoothing links is referred to as a state of the link L. All the states together form a state cube. Another
description of the Kauffman bracket is given in terms of the state cube of a link [20]. For a state s
of L, let α(s) and β(s) denote the number of 0-smoothings and 1-smoothings of crossings in state s,
respectively. The Kauffman bracket is

⟨L⟩ =
∑

s

(−1)α(s)−β(s)(−a2 − a−2)γ(s)−1. (2.1)

Here, s runs through all the states of L, and γ(s) is the number of circles of L in the state s.
It is worth noting that the Kauffman bracket is invariant under the Reidemeister moves (R2) and

(R3). However, the Kauffman bracket is not a knot invariant, as it is not invariant under (R1). To define
a knot invariant, we first introduce the concept of the writhe number. Consider an oriented diagram of
a link L. Let us define w(L) as follows: with each crossing of L, we associate +1 if it is a right-handed
crossing, and −1 if it is a left-handed crossing. For an example, see Figures 1(c) and (d). By summing
these numbers at all crossings, we obtain the writhe number w(L).

The Kauffman polynomial (or normalized Kauman bracket) of a link L is the polynomial defined as
follows

XL(a) = (−a)−3w(L)⟨L⟩. (2.2)

The Kauffman polynomial is a knot invariant [23]. By substituting a in XL(t) with t−
1
4 , we obtain the

Jones polynomial
VL(t) = XL(t−

1
4 ). (2.3)
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The Jones polynomial is a famous knot invariant introduced by Jones [8].

Remark 2.1. With the previous notations, if we set q = −a−2, then the Kauffman bracket can be
described by the conditions

(a′) ⟨⃝⟩ = q + q−1;
(b′) ⟨⃝ ∪ L⟩ = (q + q−1)⟨L⟩;
(c′) ⟨L⟩ = ⟨ρ0(L, x)⟩ − q⟨ρ1(L, x)⟩ for any x ∈ X(L).

Let n+ be the number of right-handed crossings in X(L), and let n− be the number of left-handed
crossings in X(L). The unnormalized Jones polynomial is defined by

Ĵ(L) = (−1)n−qn+−2n−⟨L⟩. (2.4)

Then, the Jones polynomial of L is defined as J(L) = Ĵ(L)/(q+q−1). This definition is more convenient
for categorifying the Jones polynomial, as specifically detailed in the literature [10].

Example 2.1. Let L be a left-handed trefoil. Consider the smoothing of L shown in Figure 2(a). For
example, the link L100 represents the original link after performing one 1-smoothing, followed by two
0-smoothings. Note that

⟨L100⟩ = ⟨⃝ ∪⃝⟩ = (q + q−1)2,

⟨L101⟩ = ⟨⃝⟩ = (q + q−1),
⟨L110⟩ = ⟨⃝⟩ = (q + q−1),
⟨L111⟩ = ⟨⃝ ∪⃝⟩ = (q + q−1)2.

It follows that

⟨L10⟩ = ⟨L100⟩ − q⟨L101⟩ = q−1(q + q−1),
⟨L11⟩ = ⟨L110⟩ − q⟨L111⟩ = −q2(q + q−1).

Thus, we have ⟨L1⟩ = ⟨L10⟩ − q⟨L11⟩ = (q−1 + q3)(q + q−1). By a similar calculation, we can obtain
⟨L0⟩ = q−2(q + q−1). Hence, we obtain

⟨L⟩ = ⟨L0⟩ − q⟨L1⟩ = (q−2 − 1 − q4)(q + q−1).

Thus the unnormalized Jones polynomial of L is

Ĵ(L) = (−1)3q−6⟨L⟩ = q−1 + q−3 + q−5 − q−9,

and the Jones polynomial of L is q−2 + q−6 − q−8.
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Figure 2. (a) The links by conducting 0-smoothings and 1-smoothings of the undercrossings
of a left-handed trefoil; (b) Two circles merging into one, or one circle splitting into two; (c)
An illustration of the differential.

2.4. Khovanov homology

Khovanov homology, introduced by Khovanov around year 2000, is regarded as a categorification
of the Jones polynomial, providing a topological interpretation of the Jones polynomial [9, 23].
Specifically, the graded Euler characteristic of Khovanov homology corresponds to the Jones
polynomial. Compared to the Jones polynomial, Khovanov homology contains more information.
Notably, Khovanov homology can detect the unknot [24].
Graded dimension: Let V =

∑
k∈Z

Vk be a graded vector space. The graded dimension of V is the power

series
d̂imV =

∑
k∈Z

qk dim Vk.

For example, if V is generated by three elements v−1, v0, v1 with the grading −1, 0, 1, respectively, then
the graded dimension of V is q−1 + 1 + q.
Degree shift: The degree shift on a graded vector space V =

∑
k∈Z

Vk is an operation ·{l} such that

W{l}k = Wk−l. By definition, one has that

d̂imV{l} = qld̂imV.
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Height shift: Let C denote the cochain complex · · · → Cn dn

→ Cn+1 → · · · . The height shift of C∗ is the
operation ·[m] such that C[m] is a cochain complex with C[m]n = Cn−m and d[m]n = dn−m : Cn−m →

Cn−m+1.
Recall that for a link, we have a state cube {0, 1}X(L). Each state s in {0, 1}X(L) can be represented

as (s1, s2, . . . , sn), where n = |X(L)|. Now, let K be the ground field, and let V be a graded vector
space with two generators v−, v+. Then, d̂imV = q−1 + q. For each state s ∈ {0, 1}X(L), we have a
space Vs(L) = V⊗c(s){ℓ(s)}, where c(s) is the number of circles in the smoothing of L at state s, and

ℓ(s) =
n∑

i=1
si is the number of ones in the representation of s. The k-th chain group of L is defined as

[[L]]k :=
⊕

s:ℓ(s)=k

Vc(s)(L). (2.5)

Then, [[L]] is a graded vector space. Furthermore, we can obtain a cochain complex [[L]]{n+ − 2n−}.
The Khovanov chain group of L is defined by

C(L) := [[L]][−n−]{n+ − 2n−}. (2.6)

More precisely, we have
Ck(L) =

⊕
ℓ(s)=k+n−

V⊗c(s){ℓ(s) + n+ − 2n−}. (2.7)

Note that Ck(L) itself is a graded vector space. Thus there is a natural graded structure on Ck(L). To
obtain a cochain complex, we will endow C(L) with a differential as follows. Consider the state cube
{0, 1}X(L) with n · 2n−1 edges. Each of the edges is of the form

(s1, s2, . . . , si−1, 0, si+1, . . . , sn)→ (s1, s2, . . . , si−1, 1, si+1, . . . , sn).

We denote the edge by ξ = (ξ1, ξ2, . . . , ξi−1, ⋆, ξi+1, . . . , ξn). Let sgn(ξ) = (−1)ξ1+···+ξi−1 , and let
|ξ| =

∑
t,i
ξt. The differential dk : Ck(L)→ Ck+1(L) is defined by d =

∑
|ξ|=k

sgn(ξ) · dξ. Now, we will review

the construction of dξ. Note that an edge of the state cube connects two adjacent states. The two states
differ by just one crossing’s smoothing, which implies that the diagrams corresponding to these two
states differ by just one circle. Geometrically, this is manifested as two circles merging into one, or
one circle splitting into two, see Figures 2(b) and (c).

Algebraically, the above process can be understood as V ⊗V → V or V → V ⊗V , because the word
length of the term V⊗c(s){ℓ(s)+n+−2n−} is equal to the number of circles. The map dξ : Ck(L)→ Ck+1(L)
is defined as:

m : V ⊗ V → V, m :
{

v+ ⊗ v+ 7→ v+, v− ⊗ v+ 7→ v−,
v+ ⊗ v− 7→ v−, v− ⊗ v− 7→ 0

(2.8)

on the components involved in merging,

∆ : V → V ⊗ V, ∆ :
{

v+ 7→ v+ ⊗ v− + v− ⊗ v+,
v− 7→ v− ⊗ v−

(2.9)

on the components involved in splitting, and the identity at other components. It can be verified that
the above construction indeed provides a differential structure on C(L). Therefore, C(L) is a cochain
complex, called the Khovanov complex. The Khovanov (co)homology of L is defined by

Hk(L) := Hk(C(L)), k ≥ 1.
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As a well-known knot invariant, Khovanov homology can decode the Jones polynomial. We call the
rank of Hk(L) the k-th Betti polynomial of L, denoted by βk(q).

The graded Poincaré polynomial of C(L) is defined by

Kh(L) =
∑

k

d̂imHk(L) · tk. (2.10)

By taking t = −1, we have the graded Euler characteristic of L given by

Xq(L) =
∑

k

(−1)kd̂imHk(L). (2.11)

It is worth noting that Xq(L) =
∑
k

(−1)kd̂imCk(L). A famous result asserts that the graded Euler

characteristic of L equals the unnormalized Jones polynomial of L.

Theorem 2.1. Let L be a link. We have Xq(L) = Ĵ(L).

The above result demonstrates that Khovanov homology provides a categorical interpretation of the
Jones polynomial, thereby establishing the significant role of Khovanov homology in knot theory. In
this work, our focus lies in applying the features of Khovanov homology to analyze and study knots
with spatial twists. Persistence is the core principle in analyzing the spatial geometric structure of
knots. This prompts us to investigate evolutionary Khovanov homology in subsequent sections.

Example 2.2. Let L be the left-handed trefoil. All the crossings are left-handed. Then, we have the
Khovanov cochain complex of L given by

0 // C−3(L) d−3
// C−2(L) d−2

// C−1(L) d−1
// C0(L) // 0.

Here, the space Ck(L) is obtained by the circles of states listed as follows:

C−3(L) =
(0,0,0)︷      ︸︸      ︷

V ⊗ V ⊗ V ,

C−2(L) =
(1,0,0)︷︸︸︷

V ⊗ V ⊕
(0,1,0)︷︸︸︷

V ⊗ V ⊕
(0,0,1)︷︸︸︷

V ⊗ V ,

C−1(L) =
(1,1,0)︷︸︸︷

V ⊕

(1,0,1)︷︸︸︷
V ⊕

(0,1,1)︷︸︸︷
V ,

C0(L) =
(1,1,1)︷︸︸︷

V ⊗ V .

Recall that V has two generators v+ and v−. Thus, the space C−3(L) has the basis

v+ ⊗ v+ ⊗ v+, v+ ⊗ v+ ⊗ v−, v+ ⊗ v− ⊗ v+, v− ⊗ v+ ⊗ v+,

v+ ⊗ v− ⊗ v−, v− ⊗ v+ ⊗ v−, v− ⊗ v− ⊗ v+, v− ⊗ v− ⊗ v−,

the space C−2(L) has the basis

(v+ ⊗ v+, 0, 0), (v+ ⊗ v−, 0, 0), (v− ⊗ v+, 0, 0), (v− ⊗ v−, 0, 0),
(0, v+ ⊗ v+, 0), (0, v+ ⊗ v−, 0), (0, v− ⊗ v+, 0), (0, v− ⊗ v−, 0),
(0, 0, v+ ⊗ v+), (0, 0, v+ ⊗ v−), (0, 0, v− ⊗ v+), (0, 0, v− ⊗ v−),
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the space C−1(L) is generated by

(v+, 0, 0), (v−, 0, 0), (0, v+, 0), (0, v−, 0), (0, 0, v+), (0, 0, v−),

and the space C0(L) has the basis

v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v−.

We represent the basis of the corresponding space Ck(L) using column vectors. The left
representation matrix B−1 for the differential d−1 is then given as follows:

d−1



(v+, 0, 0)
(v−, 0, 0)
(0, v+, 0)
(0, v−, 0)
(0, 0, v+)
(0, 0, v−)


= B−1


v+ ⊗ v+
v+ ⊗ v−
v− ⊗ v+
v− ⊗ v−

 =


0 1 1 0
0 0 0 1
0 −1 −1 0
0 0 0 −1
0 1 1 0
0 0 0 1




v+ ⊗ v+
v+ ⊗ v−
v− ⊗ v+
v− ⊗ v−

 .

Similarly, the left representation matrices of the differentials d−3 and d−2 with respect to the chosen
basis are given by

B−3 =



1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0


, B−2 =



−1 0 −1 0 0 0
0 −1 0 −1 0 0
0 −1 0 −1 0 0
0 0 0 0 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 1 0 0 0 −1
0 0 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 0 0 0



.

By step-by-step calculation, we can obtain the corresponding Khovanov homology presented in
Table 1.

Table 1. The Khovanov homology Hk,l(L) of L.

Hk,l(L) k = 0 k = −1 k = −2 k = −3
l = −1 [v+ ⊗ v+] 0 0 0
l = −2 0 0 0 0
l = −3 [v+ ⊗ v−] 0 0 0
l = −4 0 0 0 0
l = −5 0 0 [v+ ⊗ v− − v− ⊗ v+] 0
l = −6 0 0 0 0
l = −7 0 0 [v− ⊗ v−]2 0
l = −8 0 0 0 0
l = −9 0 0 0 [v− ⊗ v− ⊗ v−]
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Here, k is the height and l is the degree of the homology generators. The generator [v−⊗v−]2 exhibits
a torsion of 2, meaning that 2[v− ⊗ v−]2 = 0. The remaining generators are free. Thus, we have

H−3(L) � K,

H−2(L) �
{
K ⊕ K, K is the field of characteristic 2;
K, otherwise.

H−1(L) = 0,
H0(L) � K ⊕ K.

Consider the case that 2 is invertible in K. The corresponding unnormalized Jones polynomial is
given by

Ĵ(L) = Xq(L) =
∑

k

(−1)kd̂im Hk(L) = q−1 + q−3 + q−5 − q−9.

This coincides with the result shown in Example 2.1.

3. Evolutionary Khovanov homology

We encounter challenges in establishing a filtration process for links, to the extent that we lack
even the concept of sublinks. In fact, morphisms in the category of links are provided by cobordisms,
and cobordism constructions are geometric in nature. This presents a challenge in the application of
links. Thus directly studying the filtration process on the category of links is not a favorable approach.
Therefore, in order to obtain a persistent process for link versions, we consider establishing filtration
from the perspective of Khovanov cochain complexes of links.

3.1. Smoothing link

Let L be a link diagram. Let x ∈ X(L) be a crossing of L. At crossing x, there are two smoothing
options: the 0-smoothing denoted as ρ0(L, x) and the 1-smoothing denoted as ρ1(L, x). It is worth
noting that 2X(L) = 2X(ρ0(L,x)) ⊔ 2X(ρ1(L,x)). Thus the Khovanov chain groups of ρ0(L, x) and ρ1(L, x) are
subspaces of the Khovanov chain group of L without considering the gradings. Moreover, even when
we consider gradings, the Khovanov complex C(ρ0(L, x)) or C(ρ1(L, x)) can still be a subcomplex of
C(L) in certain cases.

When x is a left-handed crossing, assume that n = |X(L)| is the number of crossing of L. Each
crossing in X(L) can be written of the form (s1, s2, . . . , sn). Let λ be the index of the crossing x in X(L).
We have a map j0 : 2X(ρ0(L,x)) → 2X(L) given by

(s1, s2, . . . , sn−1)→ (s1, . . . , sλ−1, 1, sλ, . . . , sn−1).

Let n−,0 be the number of left-handed crossings in X(ρ0(L, x)), and let n+,0 be the number of right-
handed crossings in X(ρ0(L, x)). It follows that

c(s) = c( j0(s)), n−,0 = n− − 1, n+,0 = n+, ℓ(s) = ℓ( j0(s)) − 1.

Then, we have an isomorphism of vector spaces

V⊗c(s){ℓ(s) + n+ − 2n−} � V⊗c( j0(s)){ℓ( j0(s)) + n+,0 − 2n−,0},
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which is given by the degree shift. The degree difference is

ℓ( j0(s)) + n+,0 − 2n−,0 − ℓ(s) − n+ + 2n− = 1.

The height of both side are equal: ℓ(s) − n− = ℓ( j0(s)) − n−,0. Thus the induced map

i0 : C(ρ0(L, x))→ C(L)

is an inclusion of degree -1 shift from the Khovanov complex C(ρ0(L, x)) to the Khovanov complex
C(L). Moreover, one can verify i0d = di0 step by step by confirming i0dξ = dξi0 for each ξ. Hence,
C(ρ0(L, x)) is the subcomplex of C(L).

When x is a right-handed crossing, we can verify that C(ρ1(L, x)) is a subcomplex of C(L) using a
similar approach as described above. Consider the map j1 : 2X(ρ1(L,x)) → 2X(L) given by

(s1, s2, . . . , sn−1)→ (s1, . . . , sλ−1, 0, sλ, . . . , sn−1).

We can obtain an injection i1 : C(ρ1(L, x)) → C(L) of degree 1 shift from the Khovanov complex
C(ρ1(L, x)) to the Khovanov complex C(L). Thus, we have the following proposition.

Proposition 3.1. Let L be a link, and let x be a crossing of L. If x is a left-handed crossing, C(ρ0(L, x))
is a subcomplex of C(L). If x is a right-handed crossing, C(ρ1(L, x)) is a subcomplex of C(L).

The construction described above is called the smoothing link, denoted by ρxL. Note that ρxL =
ρ0(L, x) if x is left-handed, and ρxL = ρ1(L, x) if x is right-handed. By construction, we have the
following result.

Lemma 3.2. Let L be a link, and let x, y be crossings of L. Then, we have ρxρyL = ρyρxL.

In view of Lemma 3.2, for a subset S of X(L), we obtain a link ρS L by applying the smoothing link
step by step to crossings in S . Obviously, C(ρS (L, x)) is the subcomplex of C(L).

3.2. Evolutionary Khovanov homology

A weighted link is a link L equipped with a function f : X(L) → R on the set of crossings of L.
We arrange the crossings in X(L) in ascending order of their assigned values, denoted as x1, x2, . . . , xn.
Then, we have a filtration of links

L, ρx1 L, ρx2ρx1 L, . . . , ρxn · · · ρx2ρx1 L.

Note that the link ρxn · · · ρx2ρx1 L is unknotted, comprising a collection of disjoint circles. The filtration
of links characterizes the process by which a complex link is gradually untangled, crossing by crossing,
through smoothing. This process can be understood as the evolution of a link from complexity to
simplicity.

For any real number a, we have the subsetX(L, a) ofX(L) consists of crossings x such that f (x) ≤ a.
Then we have a link ρX(L,a)L, which is called the a-indexed link.

Let (R,≤) be the category with real numbers as objects and pairs of form a ≤ b as morphisms.

Theorem 3.3. The construction C(ρX(L,−)L) is a functor from the category (R,≤)op to the category of
cochain complexes.
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Proof. For any a ≤ b, let xt1 , . . . , xtu be the crossings in X(L, b)\X(L, a). By Proposition 3.1 and
Lemma 3.2, the cochain complex C(ρX(L,b)L) = C(ρt1 · · · ρtuρX(L,a)L) is the subcomplex of C(ρX(L,a)L).
Let us denote θa,b : C(ρX(L,b)L) → C(ρX(L,a)L). For real numbers a ≤ b ≤ c, we have the following
commutative diagram.

C(ρX(L,c)L)
θb,c //

θa,c ''

C(ρX(L,b)L)

θa,bww
C(ρX(L,a)L)

It follows that θa,bθb,c = θa,c. Note that θa,a = id|C(ρX(L,a)L) for any real number a. The desired result
follows. □

For real numbers a ≤ b, we have links ρX(L,a)L and ρX(L,b)L. Note that there is an inclusion of
Khovanov cochain complexes

C(ρX(L,b)L) ↪→ C(ρX(L,a)L).

This induces the morphism of Khovanov homology

λa,b : H(ρX(L,b)L)→ H(ρX(L,a)L).

The (a, b)-evolutionary Khovanov homology of the weighted link (L, f ) is defined by

Hk
a,b(L, f ) := im(Hk(ρX(L,b)L)→ Hk(ρX(L,a)L)), k ≥ 0.

Remark 3.1. For a weighted link (L, f ) with crossings x1, x2, . . . , xn of ascending weights, one can
also obtain a filtration of links

L, ρxn L, ρxn−1ρxn L, . . . , ρx1 · · · ρxn−1ρxn L.

For any real number a, let Xa(L) be the set of crossing with weight f (x) ≥ a. Then, the construction
C(ρX−(L)L) is a functor from the category (R,≤) to the category of cochain complexes. For real numbers
a ≤ b, we define the (a, b)-evolutionary Khovanov homology of the weighted link (L, f ) as

Hk
a,b(L, f ) := im(Hk(ρXa(L)L)→ Hk(ρXb(L)L)), k ≥ 0.

This definition shares the same fundamental idea as the previous definition.
The rank of Hk

a,b(L, f ) is called the (a, b)-evolutionary Betti number, denoted by βa,b(L, f ), which
is the crucial feature for us to conduct data analysis. In particular, if we take a = b, we have that
Hk

a,b(L, f ) = Hk(ρX(L,a)L). Furthermore, we can define the (a, b)-evolutionary unnormalized Jones
polynomial as

Ĵa,b(L) =
∑

k

(−1)kd̂imHk
a,b(L).

As a direct corollary of Proposition 3.3, we have the following result, which shows that the
evolutionary Khovanov homology is a (co)persistence module [25].

Theorem 3.4. The evolutionary Khovanov homology H : (R,≤)op → VecK is a functor from the
category (R,≤)op to the category of K-module.
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Evolutionary Khovanov homology tracks how the generators of Khovanov homology evolve with
changes in parameter filtration. This concept shares a remarkable similarity with persistent homology.
Yet, there are fundamental distinctions between the evolution process of evolutionary Khovanov
homology and the persistence process of persistent homology: the former relies on smoothing the link,
while the latter is established through the Vietoris-Rips complex, ensuring a continuous persistence.

Example 3.1. Consider the link L in Figure 3. Link L has four crossings, labeled x1, x2, x3, and x4 in
the figure. We consider the weighted functions f , g : X(L)→ R defined by

f (x1) = 1, f (x2) = 2, f (x3) = 3, f (x4) = 5,

and
g(x1) = 1, g(x2) = 3, g(x3) = 2, g(x4) = 4.

This gives us the following filtrations of links:

L, ρx1 L, ρx2ρx1 L, ρx3ρx2ρx1 L, ρx4ρx3ρx2ρx1 L,

and
L, ρx1 L, ρx3ρx1 L, ρx2ρx3ρx1 L, ρx4ρx2ρx3ρx1 L.

Figure 3. Link L produces different filtrations of links when processed through the crossings
x1, x2, x3 and through the crossings x1, x3, x2.

Note that link L is unknotted, so its Khovanov homology is trivial. The links in the filtration given
by the weighted function f are all unknotted links, hence their corresponding evolutionary Khovanov
homologies are also trivial. On the other hand, note that the link ρx3ρx1 L is a Hopf link. Its Khovanov
homology has four generators, and the Khovanov homology is given by

H−2(ρx3ρx1 L) � K ⊕ K,
H−1(ρx3ρx1 L) = 0,
H0(ρx3ρx1 L) � K ⊕ K.
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The evolutionary Khovanov homology H∗2,2(L, g) is non-trivial. This example illustrates that even if
an unknotted link has trivial Khovanov homology, its evolutionary Khovanov homology may not be
trivial. Moreover, different choices of weighting functions can produce different filtrations of links,
leading to variations in their evolutionary Khovanov homology.

3.3. Representations of evolutionary features

In the previous section, we proved that evolutionary Khovanov homology is a functor.
Consequently, evolutionary Khovanov homology also has representations similar to the barcode and
persistence diagram in persistent homology theory.

Given a weighted link (L, f ), since the links we consider have a finite number of crossings, we can
arrange the crossings of the link L in ascending order of their weights as x1, x2, . . . , xn. For any integers
1 ≤ i ≤ j ≤ n, we obtain an evolutionary Khovanov homology Hk

f (xi), f (x j)
(L, f ). Let H =

⊕
i

H f (xi)(L, f ),

and let t : H→ H be given by the map λ f (xi), f (xi+1) : H f (xi+1)(L, f )→ H f (xi)(L, f ). Then, for any element
g in the polynomial ring K[t], we obtain a map

g : H→ H.

This implies that H is a finitely generated K[t]-module. By the decomposition theorem for finitely
generated modules over a principal ideal domain, we have:

Theorem 3.5. Let (L, f ) be a weighted link. We have a decomposition of the evolutionary Khovanov
homolog of (L, f ) given by

H �
⊕

k

tbk · K[t] ⊕

⊕
l

tcl ·
K[t]

tdl · K[t]

 . (3.1)

In the decomposition mentioned above, the K[t]-module H has two components: the free part and
the torsion part. For the free part, bk represents a generator of the evolutionary Khovanov homology,
which has weight 1 until smoothing at crossing xbk and becomes weight 0 after smoothing at crossing
xbk . For the torsion part, cl represents a generator that, after smoothing at crossing xcl , its weight
becomes 0. Before smoothing at crossing xcl , this generator has weight 1 after smoothing at crossing
xcl−dl and weight 0 before smoothing at crossing xcl−dl .

Evolutionary Khovanov homology reflects the changes in homological generators of a link as it
undergoes smoothing. This provides a more nuanced characterization of the topological features of
the link. It also implies that the characteristic representation of evolutionary Khovanov homology is
highly valuable in application. Common representations include barcode and persistence diagrams.
Considering the decomposition of evolutionary Khovanov homology, each generator’s information
can be represented using intervals. For the decomposition (3.1), the generators of the free part can
be represented by intervals (−∞, bk], while for the torsion part, their generators can be represented
by intervals [cl − dl, cl]. This collection of intervals provides the barcode of evolutionary Khovanov
homology. Another well-known representation is the persistence diagram. For the generators of the
free part, they are represented by pairs of the form (−∞, bk), while for the torsion part, pairs of the
form (cl − dl, cl) are used. These pairs correspond to points on the plane R2, and these discrete points
provide the persistence diagram representation of evolutionary Khovanov homology. Other tools
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such as Betti curves and persistence landscapes are commonly used for representing and analyzing
topological features. We demonstrate these representations in examples and applications.

Example 3.2. Consider the weighted trefoil knot (L, f ) with f : X(L) → R defined as f (x1) = 1,
fx2 = 2, and fx3 = 3. Then, we have a filtration of links L, ρx1 L, ρx2ρx1 L, ρx3ρx2ρx1 L, shown in Figure
4(a). This filtration illustrates the process of untangling a crossing of a trefoil by smoothing.

Figure 4. (a) The filtration of smoothing links of the weighted trefoil link (L, f ); (b) The
barcode of the evolutionary Khovanov homology of (L, f ).

Note that the last two links are both unknotted, so they have trivial Khovanov homology. Now, let
us first examine the Khovanov complex of the link ρx1 L. Note that the map i0 : 2X(ρx2 L) → 2X(L) is
given by (s1, s2) → (1, s1, s2). Hence, we can verify the commutative diagram between the Khovanov
complex of ρx1 L and the Khovanov complex of L.

0 //

��

V ⊗ V d−2
//

� _

��

V ⊕ V d−1
//

� _

��

V ⊗ V //
� _

��

0

0 // V ⊗ V ⊗ V d−3
//

3⊕
i=1

V ⊗ V d−2
// V ⊕ V ⊕ V d−1

// V ⊗ V // 0

We select the basis of V ⊗ V as v+ ⊗ v+, v+ ⊗ v+, v+ ⊗ v+, v+ ⊗ v+, and for V ⊕ V , the basis is chosen
as (v+, 0), (v−, 0), (0, v+), (0, v−). Then, the left representation matrices of the differentials d−2 and d−1

in the Khovanov complex C∗(ρx1 L) are as follows:

B−2 =


1 0 1 0
0 1 0 1
0 1 0 1
0 0 0 0

 , B−1 =


0 1 1 0
0 0 0 1
0 −1 −1 0
0 0 0 −1

 .
From matrix calculations, we can obtain the generators of the Khovanov homology of ρx1 L as in
Table 2.
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Table 2. The Khovanov homology Hk,l(ρx1 L) of ρx1 L.

Hk,l(ρx1 L) k = 0 k = −1 k = −2
l = 0 [v+ ⊗ v+] 0 0
l = −1 0 0 0
l = −2 [v+ ⊗ v−] 0 0
l = −3 0 0 0
l = −4 0 0 [v+ ⊗ v− − v− ⊗ v+]
l = −5 0 0 0
l = −6 0 0 [v− ⊗ v−]

Therefore, the Khovanov homology of ρx1 L is given by

H−2(ρx1 L) � K ⊕ K,
H−1(ρx1 L) = 0,
H0(ρx1 L) � K ⊕ K.

The corresponding unnormalized Jones polynomial is given by

Ĵ(L) = Xq(L) =
∑

k

(−1)kd̂im Hk(L) = 1 + q−2 + q−4 + q−6.

Comparing Tables 1 and 2, we observe that the homology generators [v+ ⊗ v+], [v+ ⊗ v−], and
[v+ ⊗ v− − v− ⊗ v+] of H∗(ρx1 L) are mapped to generators in H∗(L). The generator [v− ⊗ v−] maps
to the torsion part in H∗(L). Assuming that 2 is invertible in K, we can conclude that the generator
[v− ⊗ v−] vanishes in H∗(L). The corresponding barcode of the evolutionary Khovanov homology
is shown in Figure 4(b). There are three bars, representing the generators [v+ ⊗ v+], [v+ ⊗ v−], and
[v+⊗v−−v−⊗v+]. The arrows indicate that the cohomology generators emerge from later moments and
persist toward earlier moments. These generators can be represented by intervals as [0, 1], [0, 1], and
[0, 1], respectively, each with degrees −1, −3, and −5. Besides, the (0, 1)-evolutionary unnormalized
Jones polynomial of (L, f ) is

Ĵ0,1(L) =
∑

k

(−1)kd̂imHk
0,1(L) = q−1 + q−3 + q−5.

3.4. Distance-based filtration of links

Traditional approaches to studying knots or links primarily focus on their topological properties.
However, considering knots and links as objects within a metric space, their geometric properties are
equally significant. In this section, we study the geometric information and topological characteristics
of links by exploring distance-based filtration. This method allows us to extract richer and more
effective information about links.

Consider a link L with crossings projected into a space R2. Let X(L) be the set of crossings. We
have a function f : X(L) → R defined as follows: For a crossing x ∈ R2, we can construct a disk
D(x, r) with center x and radius r. Then, f (x) is defined as the maximal real number r such that there
are no other crossings within the interior of D(x, r) apart from x. Mathematically, we have

f (x) = max{r|d(x, y) ≥ r for any crossing y , x in X(L)}. (3.2)
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Geometrically, we connect points that are within a distance r. When r < f (x), the point x remains
isolated. Based on this construction, we obtain a weighted link (L, f ). Using the method described
in 3.1, we can obtain a filtration of links, which we refer to as the distance-based filtration of links.
In the above construction, we can metaphorically say that we smooth out the isolated crossings first,
gradually breaking down the entire knot step by step.

Now, for real numbers a ≤ b, the (a, b)-evolutionary Khovanov homology of the link L is

Hk
a,b(L) := im(Hk(ρXa(L)L)→ Hk(ρXb(L)L)), k ≥ 0.

Specifically, when a and b are sufficiently large, Hk
a,b(L) = Hk(L). Conversely, when a and b are

sufficiently small, we have Hk
a,b(L) = 0. We will illustrate this method with an example.

Example 3.3. Consider the link L embedded in R3 shown in Figure 5(a). This is a knot of 76 type.

Figure 5. (a) A knot L of type 76 in 3-dimensional space; (b) The corresponding knot
diagram of L.

The coordinates of these crossings are given below:

(−3.68122, 2.1618, 0.520849), (−2.31313, 4.52637,−0.526226),
(−0.291898,−0.0329635, 0.5289), (−0.000160251,−3.82999,−0.657526),
(1.29451, 3.02755,−0.309725), (2.99467, 4.45183, 0.450002),
(3.79753, 2.50471,−0.482759).

We project the knot onto the xy-plane, obtaining a knot diagram as shown in Figure 5(b).
Through the construction of the weighted function in Eq (3.2), we can obtain a weighted link

(L, f ). Figure 6(b) depicts the process of assigning weights to crossings. Subsequently, we can derive
a filtration of links as illustrated in Figure 6(b). The variations in Figure 6(a) correspond to eight
different cases, each yielding a distinct result. In Table 3, we describe the different critical distances
corresponding to the changes in Figure 6(a), along with their respective link types. Here, 76 and
31 represent types in the knot table. Specifically, 31 denotes the trefoil. The links 52

1 and 22
1 are

representations in Rolfsen’s Table of Links, where 52
1 is the Whitehead link and 22

1 is the Hopf link.
Additionally, n⃝ denotes n separate unknots⃝.
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Figure 6. (a) As the distance decreases, isolated crossing points undergo gradual smoothing;
(b) The filtration of links provided by the distance-based weighted function.

Table 3. The link types of the filtration of links.

Filtration 1 2 3 4 5 6 7 8
Critical distance 2.019 1.953 1.904 1.724 1.366 1.279 1.109 1.053
Type of links 76 52

1 52
1+⃝ 52

1+⃝ 31+2⃝ 31+2⃝ 22
1+2⃝ 4⃝

Furthermore, for each filtration distance, we can obtain the corresponding Khovanov homology.
Figure 7 illustrates the evolution of the graded Poincaré polynomial of Khovanov homology. The x-
axis represents the filtration distance, while the y-axis denotes the Euler characteristic χ1 = χ1(Lr)
for the link Lr at distance r. Each subfigure in Figure 7 represents the surface of the graded Poincaré
polynomial of the Khovanov homology H∗(Lr).
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Figure 7. The representation of evolutionary Khovanov homology. Each subfigure
represents the surface of the graded Poincaré polynomial of the Khovanov homology at the
corresponding distance parameter. The y-axis denotes the value of Euler characteristic χq for
the case q = 1.

The graded dimensions of the Khovanov homology of the links are the graded Betti numbers
parameterized by q. When we set q = 1, it reduces to the usual Betti numbers, representing the
number of generators. In persistent homology theory, for a given dimension k and distance r, the Betti
number βk is a real number. In evolutionary Khovanov homology, for a given dimension k and distance
r, the graded Betti number βk(q) is a polynomial in q. In other words, the graded Betti number not
only includes information about the number of generators but also about the degree of each generator.
In Table 4, we observe the evolution of the graded Betti numbers in evolutionary Khovanov homology
for different values of k.

Table 4. The graded Betti of the filtration of links.

Distance
Degree 0–1.053 1.053–1.109 1.109–1.366 1.366–1.953 1.953–2.019
k ≥ 1 0 0 0 q4 + 1 q3 + q + q−1

k = 0 0 1 + q−2 q−1 + q−3 2 + 2q−2 2q−1 + 2q−3

k = −1 0 0 0 q−2 2q−3 + q−5

k = −2 0 q−4 + q−6 q−5 q−4 + q−6 2q−5 + 2q−7

k ≤ −3 0 0 q−9 q−8 q−7 + 3q−9 + q−11 + q−3
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3.5. Unzipping filtration of links

The unzipping filtration of links presents another innovative method for extracting geometric
and topological information from link diagrams. Starting from a given initial point and direction,
this technique involves progressively smoothing out each crossing along the link until none remain,
simplifying the complex links into simple circles. This process preserves crucial geometric and
topological characteristics, allowing for enhanced insight and detailed analysis at each stage of
simplification. By systematically reducing visual complexity, unzipping filtration uncovers hidden
structural features and enables systematic featurization of links, making it a valuable evolutionary
technique compared to traditional knot theory techniques.

Given a link L, we can assign it a Gauss code representation. In this Gauss code, each crossing
x of L is assigned a number G(x) and its sign. We define a function f : X(L) → Z by f (x) = G(x),
resulting in a weighted link (L, f ). This process involves starting at an initial crossing and progressively
unwrapping the link in a specified direction, akin to unzipping a zipper. The links obtained in this
evolutionary process form what is known as the unzipping filtration of links.

For real numbers a ≤ b, the (a, b)-evolutionary Khovanov homology of the link L is given by

Hk
a,b(L) := im(Hk(ρXb(L)L)→ Hk(ρXa(L)L)), k ≥ 0.

Unzipping filtration offers a distinctive alternative to distance-based filtration, with several unique
attributes. First, it is less sensitive to local disturbances, making it more resistant to noise. Second, it
has a strong connection to the Gauss code of a link diagram, directly relating the filtration process
to the link’s combinatorial properties. Third, unzipping filtration is less influenced by the spatial
distribution of crossings. While distance-based methods may struggle in isolating crossings in complex
local regions, unzipping filtration can sequentially separate and resolve individual crossings, providing
a robust method for link analysis. This makes unzipping filtration a valuable complement to distance-
based filtration as an effective evolutionary technique, offering an alternative perspective in the study
of EKH.

Example 3.4. In this example, we employed evolutionary Khovanov homology of a unzipping filtration
to investigate the knot structure of the SARS-CoV-2 frameshifting pseudoknot (PDB ID: 7LYJ). The knot
structure was generated with the following process. Initially, we simplified the molecular structure
by representing each RNA residue solely by its phosphorus atom, and connecting these atoms with
linear segments to form a continuous backbone, directed from the 5’ to 3’ end, see Figure 8(a). This
abstraction was followed by transforming the linear RNA chain into a closed loop, ensuring continuity
by connecting the terminal phosphorus atoms. Such closure is essential for applying knot theory, as
it converts the molecular structure into a topologically relevant form as in Figure 8(b). Lastly, to
facilitate the analysis of the RNA’s topological properties, we projected the closed-loop structure onto
the xz-plane, generating a knot diagram. Along the numbering of crossings, the value of the weight
function corresponds to the number assigned to each crossing. Consequently, we obtain a filtration of
links, as shown in Figure 9.
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Figure 8. (a) The representation of the SARS-CoV-2 frameshifting pseudoknot with the
5’ and 3’ ends; (b) The corresponding abstract knot of the SARS-CoV-2 frameshifting
pseudoknot formed by connecting the two ends.

Figure 9. The filtration of smoothing links of the corresponding knot diagram of the SARS-
CoV-2 frameshifting pseudoknot.

Using the method described in Section 3, we computed the evolutionary Khovanov homology
of the corresponding knot diagram of the SARS-CoV-2 frameshifting pseudoknot. We obtained the
corresponding barcode information, as shown in Figure 10. Note that the knot in Figure 8(b) is
unknotted, and its Khovanov homology is trivial. However, Figure 10 shows that its evolutionary
Khovanov homology is non-trivial, with four bars. Here, since the dimensions of generators remain
unchanged during the evolution, but their degrees change, we use the vertical axis to represent the
degree. We use polyline segments to indicate the changes in the degrees of these generators.
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Figure 10. The barcode of the evolutionary Khovanov homology of the corresponding knot
diagram of the SARS-CoV-2 frameshifting pseudoknot.

4. Conclusions

In this work, we introduce evolutionary Khovanov homology (EKH) in Euclidean space to study
the topological invariants of knot-type data at various geometric scales. By performing systematical
smoothing transformations of crossings, we transform the original link into a family of links, thereby
obtaining richer geometry-informed topological information at various filtration scales. As a result,
even unknotted links may have non-trivial EKH. Therefore, EKH not only characterizes the global
topological structure of knots or links under knot equivalence but also captures their geometric
shape. Furthermore, we employ barcodes or persistence diagrams to depict the topological features
of EKH. It is noteworthy that the generators not only provide persistent information but also possess
degree information, which holds potential value in aiding the study of knots and links in science
and engineering. Additionally, the EKH proposed in this work has deep connections with persistent
homology in the sense that they share the same algebraic structure as well as the concepts of evolution
or persistence, contributing to the enrichment and advancement of applied topology. However, they
have entirely different topological spaces and building blocks. As an approach in algebraic topology,
persistent homology deals primarily with point cloud data, whereas EKH, as a tool in geometric
topology, concerns curve-type data. Another related approach is the evolutionary de Rham-Hodge
theory, which also shares the same algebraic structure and multscale analysis with EKH, but is defined
on smooth manifolds using tools in differential geometry [17].

EKH offers significant advantages over classical knot analysis techniques [12, 26, 27]. These
traditional methods often rely on global integrals to describe knot data, which may fail to capture non-
trivial features in globally trivial data. In contrast, EKH’s multiscale framework can reveal intricate
topological structures at appropriate scales. On the other hand, compared to the multiscale Gauss
linking integral (mGLI) [13], EKH introduces an evolutionary feature that offers a persistent analysis
of topological invariants across scales. This allows EKH to provide a deeper and richer categorified
invariant at each scale, revealing finer topological details that mGLI may overlook. However, EKH
still faces challenges in areas such as localization and extending its applicability to segmentable data,
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where mGLI has proven effective.
We present two filtration approaches for EKH: distance-based filtration and unzipping filtration.

Together, these methods enhance the analytical capabilities of EKH by providing comprehensive
geometric and topological insights into knot and link structures. Note that in Examples 3.1 and 3.4, our
methods can provide non-trivial evolutionary information—even the initial state of the corresponding
knot and link is trivial. This promises significant advancements in knot data analysis, with the potential
to impact various real-life applications.

The proposed evolutionary Khovanov homology introduces multiscale analysis into Khovanov
homology by considering the metric analysis of knots or links. It opens a new direction in geometric
topology and will stimulate further developments in low-dimensional topology. Additionally, this work
represents an early attempt to apply advanced knot theory and geometric topology to the quantitative
analysis of knot-type data, in parallel to persistent homology for point cloud data and evolutionary de
Rham-Hodge theory for data on manifolds [17]. For example, the proposed approach can be extended
to persistent Laplacian [17, 28, 29] and interaction [30] types of formulations. We hope that this study
will open a new area in data science and machine learning. Finally, we envision both knot feature-based
deep neural networks and knot theory-enabled large language models, facilitated by computational
algorithm developments.
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