Topological data analysis (TDA) has experienced significant advancements with the integration of various advanced mathematical tools. While traditional TDA has primarily focused on point cloud data, there is a growing emphasis on the analysis of graph data. In this work, we proposed a spectral analysis method for digraph data, grounded in the theory of Hochschild cohomology. To enable efficient computation and practical application of Hochschild spectral analysis, we introduced the concept of truncated path algebras, along with key mathematical results that support the computation of the Hochschild Laplacian. Our study established key mathematical results, including a relationship between Hochschild Betti numbers and the Euler characteristic of digraphs, as well as efficient representations of Hochschild Laplacian matrices. These innovations enabled us to extract multiscale topological and geometric features from graph data. We demonstrated the effectiveness of our method by analyzing the molecular structures of common drugs, such as ibuprofen and aspirin, producing visualized Hochschild feature curves that capture intricate topological properties. This work provides a novel perspective on digraph analysis and offers practical tools for topological data analysis in molecular and broader scientific applications.
Citation: Yunan He, Jian Liu. Multi-scale Hochschild spectral analysis on graph data[J]. AIMS Mathematics, 2025, 10(1): 1384-1406. doi: 10.3934/math.2025064
Topological data analysis (TDA) has experienced significant advancements with the integration of various advanced mathematical tools. While traditional TDA has primarily focused on point cloud data, there is a growing emphasis on the analysis of graph data. In this work, we proposed a spectral analysis method for digraph data, grounded in the theory of Hochschild cohomology. To enable efficient computation and practical application of Hochschild spectral analysis, we introduced the concept of truncated path algebras, along with key mathematical results that support the computation of the Hochschild Laplacian. Our study established key mathematical results, including a relationship between Hochschild Betti numbers and the Euler characteristic of digraphs, as well as efficient representations of Hochschild Laplacian matrices. These innovations enabled us to extract multiscale topological and geometric features from graph data. We demonstrated the effectiveness of our method by analyzing the molecular structures of common drugs, such as ibuprofen and aspirin, producing visualized Hochschild feature curves that capture intricate topological properties. This work provides a novel perspective on digraph analysis and offers practical tools for topological data analysis in molecular and broader scientific applications.
[1] |
Y. Ahamad, U. Ali, I. Siddique, A. Iampan, W. A. Afifi, H. A. Khalifa, Computing the normalized Laplacian spectrum and spanning tree of the strong prism of octagonal network, J. Math., 2022 (2022), 9269830. https://doi.org/10.1155/2022/9269830 doi: 10.1155/2022/9269830
![]() |
[2] |
P. Bendich, J. Harer, Persistent intersection homology, Found. Comput. Math., 11 (2011), 305–336. https://doi.org/10.1007/s10208-010-9081-1 doi: 10.1007/s10208-010-9081-1
![]() |
[3] | W. Y. Bi, J. Y. Li, J. Liu, J. Wu, On the Cayley-persistence algebra, 2022, arXiv: 2205.10796. |
[4] |
Z. X. Cang, L. Mu, K. D. Wu, K. Opron, K. L. Xia, G.-W. Wei, A topological approach for protein classification, Mol. Based Math. Biol., 3 (2015), 140–162. https://doi.org/10.1515/mlbmb-2015-0009 doi: 10.1515/mlbmb-2015-0009
![]() |
[5] |
L. Caputi, H. Riihimäki, Hochschild homology, and a persistent approach via connectivity digraphs, J. Appl. and Comput. Topology, 8 (2024), 1121–1170. https://doi.org/10.1007/s41468-023-00118-9 doi: 10.1007/s41468-023-00118-9
![]() |
[6] |
G. Carlsson, Topology and data, Bull. Amer. Math. Soc., 46 (2009), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-x doi: 10.1090/S0273-0979-09-01249-x
![]() |
[7] |
G. Carlsson, V. De Silva, Zigzag persistence, Found. Comput. Math., 10 (2010), 367–405. https://doi.org/10.1007/s10208-010-9066-0 doi: 10.1007/s10208-010-9066-0
![]() |
[8] |
G. Carlsson, T. Ishkhanov, V. De Silva, A. Zomorodian, On the local behavior of spaces of natural images, Int. J. Comput. Vis., 76 (2008), 1–12. https://doi.org/10.1007/s11263-007-0056-x doi: 10.1007/s11263-007-0056-x
![]() |
[9] | G. Carlsson, G. Singh, A. Zomorodian, Computing multidimensional persistence, In: Algorithms and computation, Heidelberg: Springer, 2009,730–739. https://doi.org/10.1007/978-3-642-10631-6_74 |
[10] |
G. Carlsson, A. Zomorodian, The theory of multidimensional persistence, Discrete Comput. Geom., 42 (2009), 71–93. https://doi.org/10.1007/s00454-009-9176-0 doi: 10.1007/s00454-009-9176-0
![]() |
[11] |
D. Chen, J. Liu, G.-W. Wei, Multiscale topology-enabled structure-to-sequence transformer for protein–ligand interaction predictions, Nat. Mach. Intell., 6 (2024), 799–810. https://doi.org/10.1038/s42256-024-00855-1 doi: 10.1038/s42256-024-00855-1
![]() |
[12] |
D. Chen, J. Liu, J. Wu, G.-W. Wei, Persistent hyperdigraph homology and persistent hyperdigraph Laplacians, Found. Data Sci., 5 (2023), 558–588. https://doi.org/10.3934/fods.2023010 doi: 10.3934/fods.2023010
![]() |
[13] |
J. H. Chen, R. D. Zhao, Y. Y. Tong, G.-W. Wei, Evolutionary de Rham-Hodge method, Discrete Cont. Dyn.-B, 26 (2021), 3785–3821. https://doi.org/10.3934/dcdsb.2020257 doi: 10.3934/dcdsb.2020257
![]() |
[14] | S. Chowdhury, F. Mémoli, Persistent path homology of directed networks, In: Proceedings of the twenty-ninth annual ACM-SIAM symposium on discrete algorithms, 2018, 1152–1169. https://doi.org/10.1137/1.9781611975031.75 |
[15] |
J. R. Clough, N. Byrne, I. Oksuz, V. A. Zimmer, J. A. Schnabel, A. P. King, A topological loss function for deep-learning based image segmentation using persistent homology, IEEE T. Pattern Anal., 44 (2020), 8766–8778. https://doi.org/10.1109/TPAMI.2020.3013679 doi: 10.1109/TPAMI.2020.3013679
![]() |
[16] |
V. De Silva, D. Morozov, M. Vejdemo-Johansson, Persistent cohomology and circular coordinates, Discrete Comput. Geom., 45 (2011), 737–759. https://doi.org/10.1007/s00454-011-9344-x doi: 10.1007/s00454-011-9344-x
![]() |
[17] | H. Derksen, J. Weyman, Quiver representations, Notices of the AMS, 52 (2005), 200–206. |
[18] |
H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom., 28 (2002), 511–533. https://doi.org/10.1007/s00454-002-2885-2 doi: 10.1007/s00454-002-2885-2
![]() |
[19] |
M. Gerstenhaber, S. D. Schack, Simplicial cohomology is Hochschild cohomology, J. Pure Appl. Algebra, 30 (1983), 143–156. https://doi.org/10.1016/0022-4049(83)90051-8 doi: 10.1016/0022-4049(83)90051-8
![]() |
[20] | N. Giansiracusa, R. Giansiracusa, C. Moon, Persistent homology machine learning for fingerprint classification, 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 2019, 1219–1226. https://doi.org/10.1109/ICMLA.2019.00201 |
[21] |
G. Hochschild, On the cohomology groups of an associative algebra, Ann. Math., 46 (1945), 58–67. https://doi.org/10.2307/1969145 doi: 10.2307/1969145
![]() |
[22] |
Y. Jiang, D. Chen, X. Chen, T. Y. Li, G.-W. Wei, F. Pan, Topological representations of crystalline compounds for the machine-learning prediction of materials properties, npj Comput. Mater., 7 (2021), 28. https://doi.org/10.1038/s41524-021-00493-w doi: 10.1038/s41524-021-00493-w
![]() |
[23] |
J. Liu, D. Chen, F. Pan, J. Wu, Neighborhood path complex for the quantitative analysis of the structure and stability of carboranes, J. Comput. Biophys. Che., 22 (2023), 503–511. https://doi.org/10.1142/S2737416523500229 doi: 10.1142/S2737416523500229
![]() |
[24] | J. Liu, D. Chen, G.-W. Wei, Persistent interaction topology in data analysis, 2024, arXiv: 2404.11799. |
[25] |
J. Liu, J. Y. Li, J. Wu, The algebraic stability for persistent Laplacians, Homol. Homotopy Appl., 26 (2024), 297–323. https://dx.doi.org/10.4310/HHA.2024.v26.n2.a15 doi: 10.4310/HHA.2024.v26.n2.a15
![]() |
[26] |
X. Liu, X. J. Wang, J. Wu, K. L. Xia, Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design, Brief. Bioinform., 22 (2021), bbaa411. https://doi.org/10.1093/bib/bbaa411 doi: 10.1093/bib/bbaa411
![]() |
[27] |
U. Lupo, A. M. Medina-Mardones, G. Tauzin, Persistence Steenrod modules, J. Appl. and Comput. Topology, 6 (2022), 475–502. https://doi.org/10.1007/s41468-022-00093-7 doi: 10.1007/s41468-022-00093-7
![]() |
[28] |
C. S. Pun, S. X. Lee, K. L. Xia, Persistent-homology-based machine learning: a survey and a comparative study, Artif. Intell. Rev., 55 (2022), 5169–5213. https://doi.org/10.1007/s10462-022-10146-z doi: 10.1007/s10462-022-10146-z
![]() |
[29] |
R. Wang, D. D. Nguyen, G.-W. Wei, Persistent spectral graph, Int. J. Numer. Meth. Bio., 36 (2020), e3376. https://doi.org/10.1002/cnm.3376 doi: 10.1002/cnm.3376
![]() |
[30] |
K. L. Xia, G.-W. Wei, Persistent homology analysis of protein structure, flexibility, and folding, Int. J. Numer. Meth. Bio., 30 (2014), 814–844. https://doi.org/10.1002/cnm.2655 doi: 10.1002/cnm.2655
![]() |