This paper focuses on nonlinear sub-elliptic systems with drift terms in divergence form, under Dini continuity conditions, where the growth rate satisfies 2QQ+2<m<2, and Q represents the homogeneous dimension in the Heisenberg group. By generalizing the A-harmonic approximation technique to accommodate sub-quadratic growth, we establish the C1 regularity associated with the horizontal gradient of weak solutions away from a negligible set.
Citation: Beibei Chen, Jialin Wang, Dongni Liao. Gradient regularity for nonlinear sub-elliptic systems with the drift term: sub-quadratic growth case[J]. AIMS Mathematics, 2025, 10(1): 1407-1437. doi: 10.3934/math.2025065
[1] | Yunsoo Jang . Global gradient estimates in directional homogenization. AIMS Mathematics, 2023, 8(11): 27643-27658. doi: 10.3934/math.20231414 |
[2] | Yu Jin, Qihua Huang, Julia Blackburn, Mark A. Lewis . Persistence metrics for a river population in a two-dimensional benthic-drift model. AIMS Mathematics, 2019, 4(6): 1768-1795. doi: 10.3934/math.2019.6.1768 |
[3] | Yuejiao Feng . Regularity of weak solutions to a class of fourth order parabolic variational inequality problems arising from swap option pricing. AIMS Mathematics, 2023, 8(6): 13889-13897. doi: 10.3934/math.2023710 |
[4] | Zhaoyue Sui, Feng Zhou . Pointwise potential estimates for solutions to a class of nonlinear elliptic equations with measure data. AIMS Mathematics, 2025, 10(4): 8066-8094. doi: 10.3934/math.2025370 |
[5] | Li-Ming Yeh . Lipschitz estimate for elliptic equations with oscillatory coefficients. AIMS Mathematics, 2024, 9(10): 29135-29166. doi: 10.3934/math.20241413 |
[6] | Hind H. G. Hashem, Asma Al Rwaily . Investigation of the solvability of $ n $- term fractional quadratic integral equation in a Banach algebra. AIMS Mathematics, 2023, 8(2): 2783-2797. doi: 10.3934/math.2023146 |
[7] | Renjie Chu, Peiyuan Jin, Hanli Qiao, Quanxi Feng . Intrusion detection in the IoT data streams using concept drift localization. AIMS Mathematics, 2024, 9(1): 1535-1561. doi: 10.3934/math.2024076 |
[8] | Özge Arıbaş, İsmet Gölgeleyen, Mustafa Yıldız . On the solvability of an initial-boundary value problem for a non-linear fractional diffusion equation. AIMS Mathematics, 2023, 8(3): 5432-5444. doi: 10.3934/math.2023273 |
[9] | Qitong Ou, Huashui Zhan . The viscosity solutions of a nonlinear equation related to the p-Laplacian. AIMS Mathematics, 2017, 2(3): 400-421. doi: 10.3934/Math.2017.3.400 |
[10] | Liu Yang, Lijun Yin, Zuicha Deng . Drift coefficient inversion problem of Kolmogorov-type equation. AIMS Mathematics, 2021, 6(4): 3432-3454. doi: 10.3934/math.2021205 |
This paper focuses on nonlinear sub-elliptic systems with drift terms in divergence form, under Dini continuity conditions, where the growth rate satisfies 2QQ+2<m<2, and Q represents the homogeneous dimension in the Heisenberg group. By generalizing the A-harmonic approximation technique to accommodate sub-quadratic growth, we establish the C1 regularity associated with the horizontal gradient of weak solutions away from a negligible set.
In this paper, we consider the following nonlinear sub-elliptic systems with the drift term Tu under sub-quadratic natural growth conditions in the Heisenberg group Hn
−2n∑i=1XiAαi(ξ,u,Xu)−Tu=Bα(ξ,u,Xu),α=1,2,⋯,N, | (1.1) |
where Ω is a bounded domain, and the horizontal gradient X={X1,⋯,X2n} with the horizontal vector fields Xi(i=1,⋯,2n) and the vertical vector fields T is defined (2.1) in the next section, u=(u1,⋯,uN):Ω→RN,Aαi(ξ,u,Xu):Ω×RN×R2n×N→R2n×N, and Bα(ξ,u,Xu):Ω×RN×R2n×N→RN.
As is well known, operators with drift terms possess significant importance for research and application. For instance, the Kolmogorov–Fokker–Planck operator frequently arises in transport diffusion equations within physical science, natural science, and statistical models. Following the publication of Lanconelli and Polidoro's fundamental work [25], this type of operator has garnered increasing attention. For a comprehensive understanding of the Kolmogorov–Fokker–Planck operator, the readers may refer to [26], which reviews the class of Kolmogorov operators with constant coefficients. Within the family of Kolmogorov operators, homogeneous ones occupy a central role. Indeed, any Kolmogorov operator can be approximated, in an appropriate sense, by a homogeneous operator. For more regularity results concerning operators with drift terms, the readers may refer to previous studies [5,14,20,21,24] and the references therein. In particular, Austin and Tyson [1] achieved C∞-smoothness by the geometric analysis method for the following operator
L=−142n∑j=1X2j±√3T | (1.2) |
in the Heisenberg groups. Recently, Zhang and Niu [35] treated a quasi-linear sub-elliptic equation with drift in the Heisenberg group. For nonlinear discontinuous sub-elliptic systems with drift, Zhang and Wang [36,37] proved the partial C0,γ(0<γ<1) Hölder regularity of weak solutions.
The findings in the study of weak solutions for sub-elliptic equations and systems without the drift term include several notable regularity results. These results are significant because they provide insights into the behavior of solutions under various conditions. For a comprehensive understanding, the readers are encouraged to consult the works of Domokos [17]; Capogna [6,7]; Manfredi and Mingione [27]; Mingione, Zatorska-Goldstein, and Zhong[29]; Mukherjee and Zhong [28]; and Citti and Mukherjee [9] for sub-elliptic equations, as well as the studies [8,19,30,33,34] for sub-elliptic systems. Among these contributions, a particularly noteworthy development is the extension of the A-harmonic approximation technique to noncommutative nil-potent Lie groups. This technique involves constructing approximate solutions that satisfy certain harmonic-like properties, which can then be used to deduce the regularity properties of the original solutions. By applying this method in the context of noncommutative nil-potent Lie groups, researchers have been able to establish optimal partial regularity for nonlinear sub-elliptic systems, involving different growth rates and variant structure coefficients. It is worth pointing out that the A-harmonic approximation method was introduced by Simon [31], and developed by Duzaar and Steffen [18] in the Euclidean space, and we refer the readers to [3,4,11,15,16] and the references therein for more results concerning nonlinear elliptic and parabolic systems.
Therefore, we examine the technique of A-harmonic approximation to achieve C1 regularity for nonlinear sub-elliptic systems with the drift term Tu in the Heisenberg group. The primary novel aspect of this paper is our capacity to tackle the systems (1.1) that incorporate the drift term Tu, featuring a sub-quadratic growth rate, while relaxing the assumption on the principal coefficients to Dini continuity. We note that the first new challenge emerges due to the presence of the drift term Tu without any assumption of integrability. Then, we adopt a clever approach to avoid the requirement of integrability. In fact, we subtly employ the relationship
T=XiXn+i−Xn+iXi,i=1,2,⋯,n, |
and introduce a horizontal affine function l defined in (2.6) to derive a suitable estimate for the drift term Tu. In contrast to the sub-quadratic sub-elliptic systems without any drift term, as examined in [33] for the range 1<m<2, our scenario requires more stringent constraints 2QQ+2<m<2. This is primarily attributed to the fact that the estimates stemming from the drift term Tu cannot be incorporated into the existing estimates during the formulation of Caccioppoli-type inequalities; see Lemma 3.2. The second challenge arises from the sub-quadratic growth rate, which prevents us from utilizing L2-theory for functions in the horizontal Sobolev space HW1,m with 2QQ+2<m<2. For this reason, we choose the following excess functional
Φ(ξ0,ρ,Xl)=−∫Bρ(ξ0)|V(Xu)−V(Xl)|2dξ, |
with −∫Bρ(ξ0)u(ξ)dξ=|Bρ(ξ0)|−1Hn∫Bρ(ξ0)u(ξ)dξ and V(A)=(1+|A|2)4m−2, and establish decay estimates for Φ by a generalization of the A-harmonic approximation (Lemma 3.1) with the auxiliary function V in the Heisenberg groups.
Now we are in the position to introduce the following structural assumptions for the coefficients Aαi and Bα that are essential for our analysis throughout the paper.
(H1) The leading coefficient Aαi(ξ,u,p) is differentiable in p, and there exists a constant C such that
|Aαi,pjβ(ξ,u,p)|≤C(1+|p|2)m−22,(ξ,u,p)∈Ω×RN×R2n×N,2QQ+2<m<2, | (1.3) |
where Aαi,pjβ(ξ,u,p)=∂Aαi(ξ,u,p)∂pjβ.
(H2) The term Aαi(ξ,u,p) satisfies the following ellipticity condition
Aαi,pjβ(ξ,u,p)ηαiηβj≥λ(1+|p|2)m−22|η|2,∀η∈R2n×N, | (1.4) |
where λ is a positive constant.
(H3) There exists a modulus of continuity μ:(0,∞)→[0,∞) such that
|Aαi(ξ,u,p)−Aαi(˜ξ,˜u,p)|≤K(|u|)μ((dm(ξ,˜ξ)+|u−˜u|m)1m)(1+|p|)m2, | (1.5) |
where K(⋅):[0,∞)→[0,∞) is monotonously nondecreasing. Without loss of generality, it is convenient to take K(⋅)≥1.
(HN) (Natural growth condition) For |u|≤M=supΩ|u|, the nonhomogeneous term Bα(ξ,u,p) satisfies the following growth condition
|Bα(ξ,u,p)|≤a|p|m+b, | (1.6) |
where the positive constants a=a(M) and b=b(M) possibly depend on M>0.
Without loss of generality, we can assume that
(μ1) μ is nondecreasing with μ(0+)=0,μ(1)=1;
(μ2) μ is concave, and r⟶r−γμ(r) is nonincreasing for some exponent γ∈(0,1);
(μ3) Dini's condition M(r)=∫r0μ(ρ)ρdρ<∞ holds for some r>0.
Furthermore, (H1) implies that
|Aαi(ξ,u,p)−Aαi(ξ,u,˜p)|≤C(L)(1+|p|2+|˜p|2)m−22|p−˜p|. |
In addition, there exists a continuously non-negative and bounded function ω(s,t):[0,∞)×[0,∞)→[0,∞), satisfying ω(s,0)=0 for all s. Furthermore ω(s,t) is monotonously nondecreasing in s for a fixed t and monotonously nondecreasing in t for a fixed s such that
|Aαi,pjβ(ξ,u,p)−Aαi,pjβ(ξ,u,˜p)|≤C(1+|p|2+|˜p|2)m−22ω(|p|,|p−˜p|2). | (1.7) |
By the method of A-harmonic approximation to establish C1 regularity, the key point is to establish a certain excess decay estimate for the excess functional Φ. In the case where m≥2, this functional is given by
Φ(ξ0,ρ,Xl)=−∫Bρ(ξ0)[|Xu−Xl|2+|Xu−Xl|m]dξ. | (1.8) |
However, in the case of the sub-quadratic 2QQ+2<m<2, one should establish the excess decay estimate for the following functional:
Φ(ξ0,ρ,Xl)=−∫Bρ(ξ0)|V(Xu)−V(Xl)|2dξ. |
It is shown that if Φ(ξ0,ρ,Xl) is small enough on a ball Bρ(ξ0), then for some fixed θ∈(0,1), one has the excess improvement
Φ(ξ0,θρ,(Xu)ξ0,θρ)≤θ2τΦ(ξ0,ρ,(Xu)ξ0,ρ)+K∗(|uξ0,ρ|,|(Xu)ξ0,ρ|)μ2(ρσ), |
where σ=min{(2−m)(m−1)/m,(m−1)/2} and K∗(s,t)=C7H2/(m−1)2(2−m)(s,M+t) with positive constants C7. Iteration of this result leads to the excess decay estimate, which implies the regularity result.
The main result in this paper is as follows:
Theorem 1.1. Assume that the coefficients Aαi and Bα satisfy (H1)–(H3) and (HN) with (μ1)−(μ3). Let u∈HW1,m(Ω,RN)∩L∞(Ω,RN) be a weak solution to the system (1.1) with 2a(1+3M)/[3m−2C(M,m,n)]<λ and the constant C(M,m,n) in line with Lemma 2.2, i.e., for ∀φ∈C∞0(Ω,RN),
∫ΩAαi(ξ,u,Xu)⋅Xiφαdξ−∫ΩXiu⋅Xn+iφαdξ+∫ΩXn+iu⋅Xiφαdξ=∫ΩBα(ξ,u,Xu)⋅φαdξ. | (1.9) |
Then, there exists an open subset Ω0⊂Ω, such that u∈C1(Ω0,RN). Moreover, Ω∖Ω0=Σ1∪Σ2 and the Haar measure (Ω∖Ω0)=0, where
Σ1={ξ0∈Ω:limr→0+sup(|(Xu)ξ0,r|)=∞},Σ2={ξ0∈Ω:limr→0+inf−∫Br(ξ0)|V(Xu)−V((Xu)ξ0,r)|2dξ>0}. |
In addition, for τ∈[γ,1) and ξ0∈Ω0, the derivative Xu has the modulus of continuity r⟶rτ+M(r) in the neighborhood of ξ0.
It is worth pointing out that the Haar measure in the Heisenberg groups with the underlying manifold R2n+1 is just the Lebesgue measure in R2n+1. Our result is optimal in the sense that when μ(ρ)=ργ,0<γ<1, we have M(r)=∫r0μ(ρ)ρdρ=γ−1rγ, and we obtain C1,γ optimal Hölder regularity of weak solutions in that case; see [32] by Wang, Liao, and Yu.
Remark 1.1. When we replace the condition in (1.6) with
|Bα(ξ,u,p)|≤a|p|m−ε+b |
with ε>0 and omit the requirement 2a(1+3M)/[3m−2C(M,m,n)]<λ in Theorem 1.1, the conclusion of Theorem 1.1 remains valid.
In this section, we introduce the Heisenberg group Hn, some definitions of function spaces, and several elementary estimates which will be used later.
The Heisenberg group Hn is defined as R2n+1 with the following group multiplication:
⋅:Hn×Hn→Hn(ξ1,t)⋅(˜ξ1,˜t)↦(ξ1+˜ξ1,t+˜t+12n∑i=1(xi˜yi−˜xiyi)), |
for all ξ=(ξ1,t)=(x1,x2,⋯,xn,y1,y2,⋯,yn,t), ˜ξ=(˜ξ1,˜t)=(˜x1,˜x2,⋯,˜xn,˜y1,˜y2,⋯,˜yn,˜t). Its neutral element is 0, and its inverse of (˜ξ1,t) is given by (−˜ξ1,−t). In particular, the mapping (ξ,˜ξ)↦ξ⋅˜ξ−1 is smooth; therefore (Hn,⋅) is a Lie group.
The basic vector fields corresponding to its Lie algebra can be explicitly calculated, given by
Xi=∂∂xi−yi2∂∂t,Xn+i=∂∂yi+xi2∂∂t,T=∂∂t,i=1,2,⋯,n. | (2.1) |
The special structure of the commutators is
T=[Xi,Xn+i]=−[Xn+i,Xi]=XiXn+i−Xn+iXi,else[Xi,Xj]=0,and[T,T]=[T,Xi]=0, |
that is, (Hn,⋅) is a nil-potent Lie group of step 2. X=(X1,⋯,X2n) is called the horizontal gradient, and T is the vertical derivative.
The homogeneous norm is defined by ||(ξ1,t)||Hn=(|ξ1|4+t2)1/4, and the metric induced by this homogeneous norm is given by
d(˜ξ,ξ)=||ξ−1⋅˜ξ||Hn. | (2.2) |
The measure used on Hn is the Haar measure (the Lebesgue measure in R2n+1), and the volume of the homogeneous ball BR(ξ0)={ξ∈Hn:d(ξ0,ξ)<R} is given by
|BR(ξ0)|Hn=R2n+2|B1(ξ0)|Hn≜ωnRQ, | (2.3) |
where the number
Q=2n+2 | (2.4) |
is called the homogeneous dimension of Hn, and the quantity ωn is the volume of the homogeneous ball of radius 1.
Definition 2.1. Let Ω⊂Hn be an open set, where the horizontal Sobolev space HW1,m(Ω)(1≤m<∞) is defined as:
HW1,m(Ω)={u∈Lm(Ω)|Xiu∈Lm(Ω),i=1,2,⋯,2n}, |
which is a Banach space under the norm
||u||HW1,m(Ω)=||u||Lm(Ω)+2n∑i=1||Xiu||Lm(Ω), | (2.5) |
and the spaces HW1,m0(Ω) is the completion of C∞0(Ω) under the norm (2.5).
Definition 2.2. (Horizontal affine function). Let u∈L2(Bρ(ξ0),RN), ξ0∈R2n+1, and denote the horizontal components as ξ1=(x1,⋯,xn,y1,⋯,yn) and ξ10=(x10,⋯,xn0,y10,⋯,yn0). We call
lξ0,ρ(ξ1)=lξ0,ρ(ξ10)+Xlξ0,ρ(ξ1−ξ10) | (2.6) |
the horizontal affine function.
If the horizontal affine function lξ0,ρ(ξ1) is a minimizer of the functional
l⟼−∫Bρ(ξ0)|u−l|2dξ, |
we then have
lξ0,ρ(ξ10)=uξ0,ρ=−∫Bρ(ξ0)udξ, |
and
Xlξ0,ρ=Q−2C0QQ+2ρ2−∫Bρ(ξ0)u⊗(ξ1−ξ10)dξ. |
Lemma 2.1. (from [2]) For every 1<m<2, it holds that
1≤∫10(1+|p+s(˜p−p)|2)m−22ds(1+|p|2+|˜p|2)m−22≤8m−1, | (2.7) |
for any p,˜p∈R2n×N.
From the fact that μ is nondecreasing, we conclude that sμ(t)≤sμ(s) for all 0≤t≤s. We also note that sμ(t)≤tμ(s)≤t for 0≤s≤t and 0≤s≤1 by the nonincreasing property of r⟼μ(r)r and μ(1)≤1. Combining both cases, we get
sμ(t)≤sμ(s)+t,s∈[0,1],t>0. |
From (μ2), we deduce for θ∈(0,1),t>0, and j∈N that
2γ(1−θγ)μ1/2(θ2jt)=∫θ2jtθ2(j+1)tτγ2−1μ1/2(θ2jt)(θ2jt)γ/2dτ≤∫θ2jtθ2(j+1)tμ1/2(τ)τdτ, |
which implies
∞∑j=0μ1/2(θ2jt)≤γ2(1−θγ)∫t0μ1/2(τ)τdτ:=γ2(1−θγ)H(t). | (2.8) |
This shows particularly that μ(t)≤γ24H2(t) for all t≤0, and t⟼t−γH(t) is also nonincreasing.
Throughout the paper, we use the functions V=Vm,W=Wm:Rn⟶Rn defined by
V(ζ)=ζ/(1+|ζ|2)2−m4,W(ζ)=ζ/(1+|ζ|2−m)12 |
for each ζ∈Rn and m>1.
The purpose of introducing W is the fact that in contrast to |V|2m, the function |W|2m is convex. In fact, direct computation shows that W2m(t)=t2m(1+t2−m)−1m is a convex and monotone increasing function on [0,∞) with W2m(0)=0. Moreover, we have
|W(ζ1+ζ22)|2m=W(|ζ1+ζ2|2)2m≤W(|ζ1|+|ζ2|2)2m≤W(|ζ1|)2m+W(|ζ2|)2m2=|W(ζ1)|2m+|W(ζ2)|2m2, |
for any ζ1,ζ2∈Rn.
The following lemma includes some useful properties of the function V, as outlined in Lemma 2.1 from [22].
Lemma 2.2. Let m∈(1,2) and V,W:Rn⟶Rn be the functions defined above. Then, the following statements hold true for any ζ1,ζ2∈Rn and t>0:
(1)1√2min(|ζ1|,|ζ1|m2)≤|V(ζ1)|≤min(|ζ1|,|ζ1|m2);
(2)|V(tζ1)|≤max(t,tm2)|V(ζ1)|;
(3)|V(ζ1+ζ2)|≤C(m)(|V(ζ1)|+|V(ζ2)|);
(4)m2|ζ1−ζ2|≤|V(ζ1)−V(ζ2)|/(1+|ζ1|2+|ζ2|2)m−24≤C(m,n)|ζ1−ζ2|;
(5)|V(ζ1)−V(ζ2)|≤C(m,n)|V(ζ1−ζ2)|;
(6)|V(ζ1−ζ2)|≤C(m,M)|V(ζ1)−V(ζ2)| for all ζ1 with |ζ2|≤M.
The inequalities (1)–(3) also hold if V is replaced by W.
For later purposes, we state the following two simple estimates, which can be easily deduced from Lemma 2.2 (1) and (6). For ζ1,ζ2∈Rn, |ζ2|≤M, and for |ζ1−ζ2|≤1,
|ζ1−ζ2|2≤C(m,M)|V(ζ1)−V(ζ2)|2. | (2.9) |
When |ζ1−ζ2|>1, it yields
|ζ1−ζ2|m≤C(m,M)|V(ζ1)−V(ζ2)|2. | (2.10) |
We introduce a Sobolev–Poincaré type inequality and a prior estimate specifically for the case of sub-quadratic growth of the Heisenberg groups. Detailed proofs for these assertions can be found in the work by Wang, Liao, and Yu [32].
Lemma 2.3. (Sobolev–Poincaré type inequality) Let m∈(1,2) and u∈HW1,m(Bρ(ξ0),RN) with Bρ(ξ0)⊂Ω; then
(−∫Bρ(ξ0)|W(u−uξ0,ρρ)|2m∗mdξ)m2m∗≤Cp(−∫Bρ(ξ0)|W(Xu)|2dξ)12, | (2.11) |
where m∗=mQQ−m is the Sobolev critical exponent of m. Furthermore, the analogous inequality is valid with W being replaced by V, as defined in (2.11). In particular, the inequality also holds if we substitute 2 for 2m∗m
Lemma 2.4. Let u∈HW1,1(Ω,RN) be a weak solution of
∫ΩAα,βi,jXjuβXiϕαdξ=0 |
for any ϕ∈C10(Ω,RN), where Aα,βi,j is a constant matrix satisfying the strong Legendre–Hadamard condition:
Aα,βi,jηαηβμiμj>c|η|2|μ|2,η∈RN,μ∈Rk. |
Then u is smooth. C0≥1 exists such that for any Bρ(ξ0)⊂Ω
supBρ/2(ξ0)(|u−uξ0,ρ|2+ρ2|Xu|2+ρ4|X2u|2)≤C0ρ2−∫Bρ(ξ0)|Xu|2dξ. | (2.12) |
We will conclude this section with the following lemma from [23], which will be used to establish Caccioppoli-type inequality.
Lemma 2.5. Let f(t) be a non-negative bounded function defined for 0≤T0≤t≤T1. Suppose that for T0≤t<s≤T1, we have
f(t)≤A(s−t)−α+B(s−t)−β+C+θf(s), |
where A,B,α,β, and θ are non-negative constants and θ<1. Then there exists a constant ˉC=ˉC(θ,α,β) such that for every ρ,R:T0≤ρ<R≤T1, we have
f(ρ)≤ˉC[A(s−t)−α+B(s−t)−β+C]. |
In this section, we mainly prove the Caccioppoli-type inequality for weak solutions of the systems (1.1) with drift. First, we state the result of the A-harmonic approximation lemma, specifically addressing the case of sub-quadratic growth in the Heisenberg group, as exemplified in [10] for more general Carnot groups. The proof is similar to that in the Euclidean space [13].
Let Bil(R2n×N) denote the collection of bilinear forms defined in R2n×N, and suppose A∈Bil(R2n×N). We say that a function h∈HW1,m(Ω,RN) is A-harmonic if h satisfies:
∫ΩA(Xh,Xφ)dξ=0,∀φ∈C10(Ω,RN). | (3.1) |
Lemma 3.1. Let λ and L be fixed positive numbers 1<m<2, and n,N∈N with n≥2. If, for any given ε>0, there exists δ=δ(n,N,λ,L,ε)∈(0,1] with the following properties:
(I) For any A∈Bil(R2n×N) satisfying:
A(v,v)≥λ|v|2,A(v,¯v)≤L|v||¯v|,v,¯v∈R2n×N, | (3.2) |
(II) For any g∈HW1,m(Bρ(ξ0),RN) satisfying:
−∫Bρ(ξ0)∣V(Xg)∣2dξ≤Υ2≤1, | (3.3) |
|−∫Bρ(ξ0)A(Xg,Xφ)dξ|≤ΥδsupBρ(ξ0)|Xφ|,∀φ∈C10(Bρ(ξ0),RN). | (3.4) |
There then exists an A-harmonic function h
h∈H={h∈HW1,m(Bρ(ξ0),RN)|−∫Bρ(ξ0)∣V(Xh)∣2dξ≤1}, |
such that
−∫Bρ(ξ0)|V(g−Υhρ)|2dξ≤Υ2ε. | (3.5) |
We point out that Föglein, in [19], gave another version of the A-harmonic approximation lemma, which developed the case of quadratic growth in the Euclidean space [11] to super-quadratic growth in the Heisenberg group.
In what follows, we assume that ρ1(s,t)=(1+s+t)−1K(s+t)−1, and K1(s,t)=(1+t)2mK4(s+t) for s,t≥0, and note that ρ1≤1 and that s⟶ρ1(s,t),t⟶ρ1(s,t) are nonincreasing functions, where K(⋅) comes from (H3).
To show Theorem 1.1, our first aim is to establish a suitable Caccioppoli-type inequality.
Lemma 3.2. (Caccioppoli-type inequality) Let u∈HW1,m(Ω,RN)∩L∞(Ω,RN) be a weak solution to the system in (1.1) under the conditions (H1)–(H3) and (HN) and (μ1)−(μ3) with 2a(1+3M)/[3m−2C(M,m,n)]<λ. Then, for every ξ0∈Ω, and 0<ρ≤ρm(2−m)(m−1)1(|u0|,|Xl|), it holds that
−∫Bρ/2(ξ0)∣V(Xu−Xl)∣2dξ≤Cc(−∫Bρ(ξ0)|V(u−u0−Xl(ξ1−ξ10)ρ)|2dξ+−∫Bρ(ξ0)|u−u0−Xl(ξ1−ξ10)ρ|2dξ+F) | (3.6) |
with
F=K(⋅)(1+|Xl|)]2m/(m−1)μ2(ρ(2−m)(m−1)/m)+(1+2M+|Xl|ρ)m/(m−1)2ρm−1+[2a(2+|Xl|)+b]2/(m−1)(2−m)ρ, | (3.7) |
where we define K(⋅)=K(|u0|+|Xl|), ξ1=(x1,x2,⋯,xn,y1,y2,⋯,yn) is the horizontal component of ξ=(x1,x2,⋯,xn,y1,y2,⋯,yn,t)∈Hn, and the constant Cc=Cc(n,N,m,λ,M).
Proof. Let η∈C∞0(Bρ(ξ0)) be a standard cut-off function satisfying 0≤η≤1,|Xη|<cρ, and η≡1 on Bρ/2(ξ0). We take v=u(ξ)−u0−Xl(ξ1−ξ10) and l=u0+Xl(ξ1−ξ10), and define the two functions
φ=η2v,ϕ=(1−η2)v. |
Then, one has
Xφ+Xϕ=Xu−Xl, |
and
|V(Xφ)|,|V(Xϕ)|≤C(m)(|V(Xv)|+|V(vρ)|). | (3.8) |
Using (H2), Lemma 2.1, and the elementary inequality
1+|a|2+|b−a|2≤3(1+|a|2+|b|2), | (3.9) |
we have
−∫Bρ(ξ0)[Aαi(ξ,u,Xl+Xφ)−Aαi(ξ,u,Xl)]Xiφαdξ=−∫Bρ(ξ0)[∫10dAαi(ξ,u,Xl+θXφ)dθ]Xiφαdξ=−∫Bρ(ξ0)∫10∂Aαi(ξ,u,Xl+θXφ)∂pβjdθXjφβXiφαdξ≥λ−∫Bρ(ξ0)∫10[1+|Xl+θ((Xφ+Xl)−Xl)|2]m−22dθ|Xφ|2dξ≥λ−∫Bρ(ξ0)(1+|Xl|2+|Xφ−Xl|2)m−22|Xφ|2dξ≥3m−22λ−∫Bρ(ξ0)(1+|Xl|2+|Xφ|2)m−22|Xφ|2dξ. | (3.10) |
From (3.10), it follows that
3m−22λ−∫Bρ(ξ0)(1+|Xl|2+|Xφ|2)m−22|Xφ|2dξ≤−∫Bρ(ξ0)[Aαi(ξ,u,Xl+Xφ)−Aαi(ξ,u,Xl)]Xiφαdξ=−∫Bρ(ξ0)Aαi(ξ,u,Xu)Xiφαdξ−−∫Bρ(ξ0)Aαi(ξ,u,Xl)Xiφαdξ+−∫Bρ(ξ0)[Aαi(ξ,u,Xl+Xφ)−Aαi(ξ,u,Xu)]Xiφαdξ≤−∫Bρ(ξ0)XiuXn+iφαdξ−−∫Bρ(ξ0)Xn+iuXiφαdξ+−∫Bρ(ξ0)Bα(ξ,u,Xu)φαdξ−−∫Bρ(ξ0)[Aαi(ξ,u,Xl)−Aαi(ξ,u0+Xl(ξ1−ξ10),Xl)]Xiφαdξ−−∫Bρ(ξ0)[Aαi(ξ,u0+Xl(ξ1−ξ10),Xl)−Aαi(ξ0,u0,Xl)]Xiφαdξ−−∫Bρ(ξ0)∫10∂Aαi(ξ,u,Xu−θ(Xu−Xφ−Xl))∂pβjdθXjϕβXiφαdξ=I+II+III+IV+V. | (3.11) |
Noting that Aαi(ξ0,u0,Xl) is a constant, we have
−∫Bρ(ξ0)Aαi(ξ0,u0,Xl)Xφαdξ=0. |
By the condition φ=v on Bρ/2(ξ0), the elementary inequality 1+|a|2+|b−a|2≤3(1+|a|2+|b|2), and the fact that m−22<0 holds true for 2QQ+2<m<2, the left-hand side of (3.11) can be estimated by
3m−22λ−∫Bρ/2(ξ0)(1+|Xl|2+|Xφ|2)m−22|Xφ|2dξ=3m−22λ−∫Bρ/2(ξ0)(1+|Xl|2+|Xv|2)m−22|Xv|2dξ=3m−22λ−∫Bρ/2(ξ0)(1+|Xl|2+|Xu−Xl|2)m−22|Xu−Xl|2dξ≥3m−22λ−∫Bρ/2(ξ0)[3(1+|Xl|2+|Xu|2)]m−22|Xu−Xl|2dξ=3m−2λ−∫Bρ/2(ξ0)[(1+|Xl|2+|Xu|2)m−24|Xu−Xl|]2dξ≥3m−2λC(m,n)−∫Bρ/2(ξ0)|V(Xu)−V(Xl)|2dξ≥3m−2λC(M,m,n)−∫Bρ/2(ξ0)|V(Xu−Xl)|2dξ=3m−2λC(M,m,n)−∫Bρ/2(ξ0)|V(Xv)|2dξ, | (3.12) |
where we have applied the fact that Xv=Xu−Xl, Lemma 2.2 (4) in the third inequality from the end, Lemma 2.2 (6) in the penultimate inequality.
We are in the position to estimate the term I. By the fact that Tl=XiXn+il−Xn+iXil=0 and the condition |Tη|≤Cρ2, it leads to
I=−∫Bρ(ξ0)Xiu⋅Xn+i(η2(u−l))dξ−−∫Bρ(ξ0)Xn+iu⋅Xi(η2(u−l))dξ=−∫Bρ(ξ0)Xi(u−l)⋅Xn+i(η2(u−l))dξ+−∫Bρ(ξ0)Xil⋅Xn+i(η2(u−l))dξ−−∫Bρ(ξ0)Xn+i(u−l)⋅Xi(η2(u−l))dξ−−∫Bρ(ξ0)Xn+il⋅Xi(η2(u−l))dξ=−∫Bρ(ξ0)η2Xi(u−l)⋅Xn+i(u−l)dξ+−∫Bρ(ξ0)2ηXn+iηXi((u−l)2)dξ−−∫Bρ(ξ0)Xn+iXil⋅(η2(u−l))dξ−−∫Bρ(ξ0)η2Xn+i(u−l)⋅Xi(u−l)dξ−−∫Bρ(ξ0)2ηXiηXn+i((u−l)2)dξ+−∫Bρ(ξ0)XiXn+il⋅(η2(u−l))dξ≤−∫Bρ(ξ0)ηXn+iηXi((u−l)2)dξ−−∫Bρ(ξ0)ηXiηXn+i((u−l)2)dξ≤−−∫Bρ(ξ0)ηXiXn+iη⋅(u−l)2dξ+−∫Bρ(ξ0)ηXn+iXiη⋅(u−l)2dξ≤−−∫Bρ(ξ0)ηTη⋅(u−l)2dξ≤C−∫Bρ(ξ0)|u−lρ|2dξ. | (3.13) |
Applying Hölder's inequality, we infer that
II=−∫Bρ(ξ0)Bα(ξ,u,Xu)φαdξ≤−∫Bρ(ξ0)(a|Xu|m+b)|v|η2dξ≤−∫Bρ(ξ0)(a|Xu|m|v|η2+b|v|η2)dξ≤−∫Bρ(ξ0)[(a(1+μ)|Xu−Xl|m+(1+1μ)|Xl|m)|v|η2+bρη2|vρ|]dξ. | (3.14) |
To obtain a suitable estimate for II, we need to split the domain Bρ(ξ0) into four parts: Bρ(ξ0)∩{|v/ρ|>1}∩{|Xu−Xl|≤1}, Bρ(ξ0)∩{|v/ρ|>1}∩{|Xu−Xl|>1}, Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xu−Xl>1}, and Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xu−Xl|≤1}. We then use Young's inequality, and note that |v|=|u−u0−Xl(ξ1−ξ10)|≤2M+|Xl|ρ on Bρ(ξ0) to have the following estimates.
Case 1: For Bρ(ξ0)∩{|Xu−Xl|>1}∩{|v/ρ|≤1}, it follows that
(a(1+μ)|Xu−Xl|m+a(1+1μ)|Xl|m)|v|η2+(bρη2)|vρ|≤a(1+μ)(2M+Xlρ)|Xu−Xl|m+a(1+1μ)|Xl|mη2ρ|vρ|+bρη2≤aC(m,M)(1+μ)(2M+Xlρ)|V(Xv)|2+a(1+1μ)|Xl|mρ+bρ. |
Case 2: For the set Bρ(ξ0)∩{|Xu−Xl|>1}∩{|v/ρ|>1}, we have
(a(1+μ)|Xu−Xl|m+a(1+1μ)|Xl|m)|v|η2+(bρη2)|vρ|≤a(1+μ)(2M+Xlρ)|Xu−Xl|m+a(1+1μ)|Xl|mη2ρ|vρ|+ε(bρη2)mm−1+C(ε)|vρ|m≤aC(m,M)(1+μ)(2M+Xlρ)|V(Xv)|2+ε(bρ)mm−1+ε[a(1+1μ)|Xl|mρ]mm−1+C(ε,m,M)|V(vρ)|2. |
Case 3: For Bρ(ξ0)∩{|Xu−Xl|≤1}∩{|v/ρ|≤1}, we get
(a(1+μ)|Xu−Xl|m+a(1+1μ)|Xl|m)|v|η2+(bρη2)|vρ|≤ε|Xu−Xl|2+C(ε)[a(1+μ)ρ]2/(2−m)+a(1+1μ)|Xl|mη2ρ+bρη2≤εC(m,M)|V(Xv)|2+C(ε)[a(1+μ)ρ]2/(2−m)+a(1+1μ)|Xl|mρ+bρ. |
Case 4: For the case where Bρ(ξ0)∩{|Xu−Xl|≤1}∩{|v/ρ|>1}, one obtains
(a(1+μ)|Xu−Xl|m+a(1+1μ)|Xl|m)|v|η2+(bρη2)|vρ|=a(1+μ)|Xu−Xl|m|v|η2ρm(2−m)2ρm(m−2)2+a(1+1μ)|Xl|m|v|η2+(bρη2)|vρ|≤ερ2−m|Xu−Xl|2+C(ε)(a(1+μ))22−m(2M+Xlρ)2−2m+m22−m|vρ|m+ε[a(1+1μ)|Xl|mρη2]mm−1+ε(bρη2)mm−1+C(ε)|vρ|m≤εC(m,M)|V(Xv)|2+C(ε,m,M)(a(1+μ))22−m(2M+Xlρ)2−2m+m22−m|V(vρ)|2+ε[a(1+1μ)|Xl|mρ]mm−1+ε(bρ)mm−1+C(ε,m,M)|V(vρ)|2. |
Combining these estimates in II″, we have
II≤aC(m,M)(1+μ)(1+3M)−∫Bρ(ξ0)|V(Xv)|2dξ+C(ε,μ,m,M,a)∫Bρ(ξ0)|V(vρ)|2dξ+Cmax{[a(1+1μ)]m/(m−1)|Xl|m(1+|Xl|m/(m−1))+[a(1+μ)]22−m+bm/(m−1)}ρ2, | (3.15) |
where we have used |Xl|≤M+1.
The condition (H3) yields the following (note that m−1<m/2):
III=−∫Bρ(ξ0)[Aαi(ξ,u,Xl)−Aαi(ξ,u0+Xl(ξ1−ξ10),Xl)]Xiφαdξ≤−∫Bρ(ξ0)K(⋅)(1+|Xl|)m2μ(|v|)|Xφ|dξ, | (3.16) |
where we have used the inequality sμ(t)≤sμ(s)+t for s∈[0,1] and t>0.
To obtain a suitable estimate for III, we need to split the domain Bρ(ξ0) into four parts: Bρ(ξ0)∩{|v/ρ|>1}∩{|Xφ|≤1},Bρ(ξ0)∩{|v/ρ|>1}∩{|Xφ|>1},Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xφ>1}, and Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xφ|≤1}. We use Young's inequality, (2.9), and (2.10) repeatedly.
Case 1: For the set Bρ(ξ0)∩{|v/ρ|>1}∩{|Xφ|>1},
[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)+|v|ρ(2−m)(m−1)/m]|Xφ|≤2ε|Xφ|m+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]m/(m−1)+ε−1|v|m/(m−1)ρm−2≤2ε|Xφ|m+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]m/(m−1)+ε−1|vρ||v|1/(m−1)ρm−1≤2ε|Xφ|m+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]m/(m−1)+ε−1|vρ|m+ε−1|v|m/(m−1)2ρm≤2εC(m,M)|V(Xφ)|2+ε−1C(m,M)|V(vρ)|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]m/(m−1)+ε−1|2M+Xlρ|m/(m−1)2ρm. |
Case 2: For Bρ(ξ0)∩{|v/ρ|>1}∩{|Xφ|≤1},
[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)+|v|ρ(2−m)(m−1)/m]|Xφ|≤2ε|Xφ|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]2+ε−1|vρ||v|ρ(m−2)2(m−1)m⋅ρ≤2ε|Xφ|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]2+ε−1|vρ||v|ρm−2⋅ρ≤2ε|Xφ|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]2+ε−1|vρ|m+ε−1|v|m/(m−1)ρm≤2εC(m,M)|V(Xφ)|2+ε−1C(m,M)|V(vρ)|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]2+ε−1|2M+Xlρ|m/(m−1)ρm, |
where we have used the facts that 2(m−1)/m<1.
Case 3: For Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xφ|>1}, observing that m/(m−1)>2, one has
[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)+|v|ρ(2−m)(m−1)/m]|Xφ|≤2ε|Xφ|m+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]m/(m−1)+ε−1|v|m/(m−1)ρm−2≤2ε|Xφ|m+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]m/(m−1)+ε−1|vρ||v|1/(m−1)ρm−1≤2εC(m,M)|V(Xφ)|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]m/(m−1)+ε−1|2M+Xlρ|1/(m−1)ρm−1. |
Case 4: For the case of Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xφ|≤1},
[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)+|v|ρ(2−m)(m−1)/m]|Xφ|≤2ε|Xφ|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]2+ε−1|vρ|2ρ(m−2)2(m−1)m⋅ρ2≤2ε|Xφ|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]2+ε−1ρm−2⋅ρ2≤2εC(m,M)|V(Xφ)|2+ε−1[K2(⋅)(1+|Xl|)mμ(ρ(2−m)(m−1)/m)]2+ε−1ρm, |
where we have used the fact that 2(m−1)/m<1.
Combining these estimations with (3.15), we get
III≤εC(m,M)−∫Bρ(ξ0)|V(Xv)|2dξ+C(ε,m,M)−∫Bρ(ξ0)|V(vρ)|2dξ+ε−1K2m/(m−1)(⋅)(1+|Xl|)m2/(m−1)μ2(ρ(2−m)(m−1)/m)+ε−1(1+2M+Xlρ)m/(m−1)2ρm−1. | (3.17) |
We apply (H3) to get (noting that m/(m−1)<2)
IV=−∫Bρ(ξ0)[Aαi(ξ,u0+Xl(ξ1−ξ10),Xl)−Aαi(ξ0,u0,Xl)]Xiφαdξ≤−∫Bρ(ξ0)K(⋅)(1+|Xl|)m+22μ(ρ)|Xφ|dξ. | (3.18) |
To obtain a suitable estimate for IV, we need to split the domain Bρ(ξ0) into four parts: Bρ(ξ0)∩{|v/ρ|>1}∩{|Xφ|≤1},Bρ(ξ0)∩{|v/ρ|>1}∩{|Xφ|>1},Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xφ>1}, and Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xφ|≤1}. We use Young's inequality, (2.9), and (2.10) repeatedly.
Case 1: Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xφ|>1} and Bρ(ξ0)∩{|v/ρ|>1}∩{|Xφ|>1}, observing that m/(m−1)>2,
K(⋅)(1+|Xl|)m+22μ(ρ)|Xφ|dξ≤ε|Xφ|m+C(ε)[K(⋅)(1+|Xl|)m+22μ(ρ)]mm−1≤εC(m,M)|V(Xφ)|2+C(ε)[K(⋅)(1+|Xl|)m+22μ(ρ)]mm−1≤εC(m,M)|V(Xv)|2+εC(m,M)|V(vρ)|2+C(ε)[K(⋅)(1+|Xl|)m+22μ(ρ)]mm−1. |
Case 2: Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xφ|≤1} and Bρ(ξ0)∩{|v/ρ|>1}∩{|Xφ|≤1},
K(⋅)(1+|Xl|)m+22μ(ρ)|Xφ|dξ≤ε|Xφ|2+ε−1[K(⋅)(1+|Xl|)m+22μ(ρ)]2≤εC(m,M)|V(Xφ)|2+ε−1[K(⋅)(1+|Xl|)m+22μ(ρ)]2≤εC(m,M)|V(Xv)|2+εC(m,M)|V(vρ)|2+ε−1[K(⋅)(1+|Xl|)m+22μ(ρ)]2. |
Combining these estimations with (3.18), we get
IV≤εC(m,M)−∫Bρ(ξ0)|V(Xv)|2dξ+εC(m,M)−∫Bρ(ξ0)|V(vρ)|2dξ+C(ε)K(⋅)mm−1(1+|Xl|)m(m+2)2(m−1)μ2(ρ), | (3.19) |
where we used mm−1>2,m(m+2)2(m−1)>m+2.
By (H1), Lemma 2.1, and (3.9), it holds that
V=−∫Bρ(ξ0)∫10∂Aαi(ξ,u,Xu−θ(Xu−Xφ−Xl))∂pβjdθXjϕβXiφαdξ≤C−∫Bρ(ξ0)[∫10(1+|Xu+θ(Xu−Xφ−Xl)|2)m−22dθ]|Xϕ||Xφ|dξ≤C−∫Bρ(ξ0)[∫10(1+|Xu+θ[(Xu−Xϕ)−Xu]|2)m−22dθ]|Xϕ||Xφ|dξ≤8Cm−1−∫Bρ(ξ0)(1+|Xu|2+|Xu−Xϕ|2)m−22|Xϕ||Xφ|dξ≤8Cm−1−∫Bρ(ξ0)(1+|Xu|2+|Xϕ|2)m−22|Xϕ||Xφ|dξ≤8Cm−1−∫Bρ(ξ0)(1+|Xϕ|2)m−22|Xϕ||Xφ|dξ. | (3.20) |
Noting that −1/2<m−22<0, and ϕ=(1−η)v=0 due to η=1 on Bρ/2(ξ0), we split the domain Bρ(ξ0) into four parts: Bρ(ξ0)∩{|Xϕ|>1}∩{Xφ|>1},Bρ(ξ0)∩{|Xϕ|≤1}∩{Xφ|≤1},Bρ(ξ0)∩{|Xϕ|>1}∩{Xφ|≤1}, and Bρ(ξ0)∩{|Xϕ|≤1}∩{Xφ|>1}. Thus by Young's inequality and the estimations in (2.9) and (2.10), there is
V≤C(m,M)m−1−∫Bρ(ξ0)∖Bρ/2(ξ0)|V(Xu−Xl)|2dξ+C(M,m,n)−∫Bρ(ξ0)|V(vρ)|2dξ. | (3.21) |
Substituting (3.12), (3.13), (3.15), (3.17), (3.19) and (3.21) into (3.11), we finally arrive at
[3m−2λC(M,m,n)+C(m,M)m−1]−∫Bρ/2(ξ0)|V(Xv)|2dξ≤[C(m,M)m−1+(3ε+2a(1+3M))C(m,M)]−∫Bρ(ξ0)|V(Xv)|2dξ+C(ε,a,n,m,M)−∫Bρ(ξ0)|V(vρ)|2dξ+C(ε,a,n,m,M)−∫Bρ(ξ0)|vρ|2dξ+C(ε)[K(⋅)(1+|Xl|)]2m/m−1μ2(ρ(2−m)(m−1)/m)+(1+2M+|Xl|ρ)m/(m−1)2ρm−1+[2a(2+|Xl|)+b]2/(m−1)(2−m)ρ, |
where we have used 2m/(m−1)>m(m+2)/2(m−1)>m2/(m−1) and the nondecreasing property of μ.
We take ε=[3m−2λC(M,m,n)−2a(1+3M)]/6 with the assumption λ>2a(1+3M)/[3m−2C(M,m,n)]. Filling the gaps with θ=C(m,M)m−1+[3ε+2a(1+3M)C(M,m,n)]3m−2λC(M,m,n)+C(m,M)m−1<1 in Lemma 2.5 yields
−∫Bρ/2(ξ0)|V(Xu−Xl)|2dξ≤C(−∫Bρ(ξ0)|V(vρ)|2dξ+−∫Bρ(ξ0)|vρ|2dξ+F)+θ−∫Bρ(ξ0)|V(Xu−Xl)|2dξ, |
where
F=[K(⋅)(1+|Xl|)]2m/(m−1)μ2(ρ(2−m)(m−1)/m)+(1+2M+|Xl|ρ)m/(m−1)2ρm−1+[2a(2+|Xl|)+b]2/(m−1)(2−m)ρ. | (3.22) |
The proof is completed by noting that [m(r−1)/r(m−1)−1]Q=m/(m−1) and ρm/(m−1)≤ρ2(2−m)(m−1)/m≤μ2(ρ(2−m)(m−1)/m).
In this section, we provide a linearization strategy for non-linear sub-elliptic systems (1.1). Later on, this will be the starting point for the application of the A-harmonic approximation lemma.
Lemma 3.3. We claim that if ρ≤ρm(2−m)(m−1)1(|u0|,|Xl|) and φ∈C∞0(Bρ(ξ0),RN) with supBρ(ξ0)|Xφ|≤1, then there exist some constants C1=C1(m,M,Cp,K)>1 such that
−∫Bρ(ξ0)Aαi,pjβ(ξ0,u0,Xl)(Xu−Xl)Xφαdξ≤C1supBρ(ξ0)|Xφ|[ω(|Xl|,Φ12(ξ0,ρ,Xl))Φ12(ξ0,ρ,Xl)+Φ12(ξ0,ρ,Xl)+Φ(ξ0,ρ,Xl)+Φ1m(ξ0,ρ,Xl)+μ(√ρ)F(|u0|,|Xl|)], | (3.23) |
where we assume that F(s,t)=K4/(2−m)(s+t)(2+t)2+a(1+tm)+b.
Proof. A straightforward computation yields
−∫Bρ(ξ0)[∫10Aαi,pjβ(ξ0,u0,θXu+(1−θ)Xl)(Xu−Xl)dθ]Xφαdξ=−∫Bρ(ξ0)[∫10ddθAαi(ξ0,u0,θXu+(1−θ)Xl)dθ]Xφαdξ=−∫Bρ(ξ0)[Aαi(ξ0,u0,Xu)−Aαi(ξ,u,Xu)]Xφαdξ+−∫Bρ(ξ0)Bα(ξ,u,Xu)φαdξ+−∫Bρ(ξ0)XiuXn+iφαdξ−−∫Bρ(ξ0)Xn+iuXiφαdξ. | (3.24) |
Then, we have
−∫Bρ(ξ0)Aαi,pjβ(ξ0,u0,Xl)(Xu−Xl)Xφαdξ=−∫Bρ(ξ0)[∫10Aαi,pjβ(ξ0,u0,Xl)dθ(Xu−Xl)]Xφαdξ≤−∫Bρ(ξ0)XiuXn+iφαdξ−−∫Bρ(ξ0)Xn+iuXiφαdξ+C−∫Bρ(ξ0)(a|Xu|m+b)φαdξ+−∫Bρ(ξ0){∫10|Aαi,pjβ(ξ0,u0,Xl)−Aαi,pjβ(ξ0,u0,θXu+(1−θ)Xl)||Xu−Xl|dθ}supBρ(ξ0)|Xφ|dξ+−∫Bρ(ξ0)|Aαi(ξ0,u0,Xu)−Aαi(ξ,u0+Xl(ξ1−ξ10),Xu)|supBρ(ξ0)|Xφ|dξ+−∫Bρ(ξ0)|Aαi(ξ,u0+Xl(ξ1−ξ10),Xu)−Aαi(ξ,u,Xu)|supBρ(ξ0)|Xφ|dξ=I′+II′+III′+IV′+V′, | (3.25) |
where we have used the fact that −∫Bρ(ξ0)Aαi(ξ0,u0,Xl)Xφαdξ=0.
By the relationship of T=XiXn+i−Xn+iXi, the term I′ can be estimated as follows:
I′=−∫Bρ(ξ0)XiuXn+iφαdξ−−∫Bρ(ξ0)Xn+iuXiφαdξ=−∫Bρ(ξ0)Xi(u−l)Xn+iφαdξ+−∫Bρ(ξ0)XilXn+iφαdξ−−∫Bρ(ξ0)Xn+i(u−l)Xiφαdξ−−∫Bρ(ξ0)Xn+ilXiφαdξ=−∫Bρ(ξ0)Xi(u−l)Xn+iφαdξ−−∫Bρ(ξ0)Xn+i(u−l)Xiφαdξ−−∫Bρ(ξ0)Xn+iXilφαdξ+−∫Bρ(ξ0)XiXn+ilφαdξ=−∫Bρ(ξ0)Xi(u−l)Xn+iφαdξ−−∫Bρ(ξ0)Xn+i(u−l)Xiφαdξ≤supBρ(ξ0)|Xφ|∫Bρ(ξ0)|Xu−Xl|dξ. | (3.26) |
Let
B1=:Bρ(ξ0)∩{|Xu−Xl|≤1},B2=:Bρ(ξ0)∩{|Xu−Xl|>1}. |
It follows that
−∫Bρ(ξ0)|Xu−Xl|dξ=−∫B1|Xu−Xl|dξ+−∫B2|Xu−Xl|dξ≤(−∫B1|Xu−Xl|2dξ)12+(−∫B2|Xu−Xl|mdξ)1m≤C[(−∫Bρ(ξ0)|V(Xu)−V(Xl)|2dξ)12+(−∫Bρ(ξ0)|V(Xu)−V(Xl)|2dξ)1m]≤C(Φ12(ξ0,ρ,Xl)+Φ1m(ξ0,ρ,Xl)). | (3.27) |
We then obtain:
I′≤C(Φ12(ξ0,ρ,Xl)+Φ1m(ξ0,ρ,Xl)). | (3.28) |
With the help of the fact that supBρ(ξ0)|φ|≤ρ≤1, we derive
II′=−∫Bρ(ξ0)(a|Xu|m+b)|φ|dξ≤2m−1ρ[−∫Bρ(ξ0)a|Xu−Xl|mdξ+(a|Xl|m+b)]. |
For the case where B1=:Bρ(ξ0)∩{|Xu−Xl|≤1}, it follows, by Young's inequality and (2.9), that
|Xu−Xl|m≤|Xu−Xl|m⋅2m+122−m≤C(m,M)|V(Xu)−V(Xl)|2+1, |
and thus
II′≤C(m,M)[−∫B1a|V(Xu)−V(Xl)|2dξ+(a|Xl|m+a+b)μ(√ρ)]. |
On the other hand, for B2=:Bρ(ξ0)∩{|Xu−Xl|>1}, it follows by Young's inequality and (2.10) that
II′≤C(m,M)[−∫B2a|V(Xu)−V(Xl)|2dξ+(a|Xl|m+b)μ(√ρ)]. |
Thus, by combining these estimates and noting the definition of F(s,t), we infer that
II′≤C(a,m,M)[Φ(ξ0,ρ,Xl)+[a(|Xl|m+1)+b]μ(√ρ)]. | (3.29) |
We can estimate the integrand of III′ in different ways depending on whether |Xu−Xl|≤1 or |Xu−Xl|>1.
For the first case, |Xu−Xl|≤1. Applying (1.7), Lemma 2.2 (1), Hölder's inequality, and Jensen's inequality leads to
III′=−∫Bρ(ξ0)[∫10|Aαi,pjβ(ξ0,u0,Xl)−Aαi,pjβ(ξ0,u0,θXu+(1−θ)Xl)||Xu−Xl|dθ]supBρ(ξ0)|Xφ|dξ≤C−∫Bρ(ξ0){∫10[(1+|Xl|2+|Xl+θ(Xu−Xl)|2)m−22ω(|Xl|,|θ(Xu−Xl)|)]dθ}|Xu−Xl|dξ≤C−∫Bρ(ξ0)ω(|Xl|,|Xu−Xl|)|Xu−Xl|dξ≤C−∫Bρ(ξ0)ω(|Xl|,|V(Xu−Xl)|)|V(Xu−Xl)|dξ≤Cω(|Xl|,(−∫Bρ(ξ0)|V(Xu)−V(Xl)|2dξ)12)(−∫Bρ(ξ0)|V(Xu)−V(Xl)|2dξ)12=Cω(|Xl|,Φ12(ξ0,ρ,Xl))Φ12(ξ0,ρ,Xl). | (3.30) |
For the second case, |Xu−Xl|>1. By the assumption in (H1), Lemma 2.2(1), and 2QQ+2<m<2, one gets
III′=−∫Bρ(ξ0)[∫10|Aαi,pjβ(ξ0,u0,Xl)−Aαi,pjβ(ξ0,u0,θXu+(1−θ)Xl)||Xu−Xl|dθ]supBρ(ξ0)|Xφ|dξ≤C−∫Bρ(ξ0){∫10[(1+|Xl|2)m−22+(1+|Xl+θ(Xu−Xl)|2)m−22]dθ}|Xu−Xl|dξ≤C−∫Bρ(ξ0)|Xu−Xl|dξ≤C−∫Bρ(ξ0)|Xu−Xl|mdξ≤C−∫Bρ(ξ0)|V(Xu)−V(Xl)|2dξ=CΦ(ξ0,ρ,Xl). | (3.31) |
Combining the last two estimates mentioned above implies that
III′=−∫Bρ(ξ0)[∫10|Aαi,pjβ(ξ0,u0,Xl)−Aαi,pjβ(ξ0,u0,θXu+(1−θ)Xl)||Xu−Xl|dθ]supBρ(ξ0)|Xφ|dξ≤Cω(|Xl|,Φ12(ξ0,ρ,Xl))Φ12(ξ0,ρ,Xl)+CΦ(ξ0,ρ,Xl). | (3.32) |
By employing (H3), Lemma 2.2, and Young's inequality, and noting the fact that K(⋅)>1, we deduce that
IV′=−∫Bρ(ξ0)|Aαi(ξ0,u0,Xu)−Aαi(ξ,u0+Xl(ξ1−ξ10),Xu)|supBρ(ξ0)|Xφ|dξ≤−∫Bρ(ξ0)K(⋅)μ(ρ)(1+|Xl|)(1+|Xu|)m2dξ≤−∫Bρ(ξ0)K(⋅)μ(ρ)(1+|Xl|)[(1+|Xl|)m2+|Xu−Xl|m2]dξ≤K(⋅)μ(ρ)(1+|Xl|)1+m2+−∫B1+B2K(⋅)μ(ρ)(1+|Xl|)|Xu−Xl|m2dξ≤K(⋅)μ(ρ)(1+|Xl|)1+m2+−∫B1K(⋅)μ(ρ)(1+|Xl|)|Xu−Xl|m2dξ+−∫B2K(⋅)μ(ρ)(1+|Xl|)|Xu−Xl|m2dξ≤K(⋅)μ(ρ)(1+|Xl|)1+m2+[K(⋅)μ(ρ)(1+|Xl|)]2+[K(⋅)μ(ρ)(1+|Xl|)]44−m+−∫B2|Xu−Xl|mdξ+−∫B1|Xu−Xl|2dξ≤Φ(ξ0,ρ,Xl)+3[K(⋅)(1+|Xl|)]2μ(ρ), | (3.33) |
where we have used the fact that 4/(4−m)<2,1+m/2<2 and μ(ρ)≤1 for ρ∈[0,1].
Using the inequality sμ(t)≤sμ(s)+t for s∈[0,1] and t>0, we obtain:
V′=−∫Bρ(ξ0)|Aαi(ξ,u0+Xl(ξ1−ξ10),Xu)−Aαi(ξ,u,Xu)|dξ≤−∫Bρ(ξ0)K(⋅)(1+|Xu|)m2μ(|v|)dξ≤−∫Bρ(ξ0)1√ρ[K(⋅)(1+|Xu|)m2√ρ]μ(|v|)dξ≤−∫Bρ(ξ0)1√ρ[|v|+K(⋅)(1+|Xu|)m2√ρμ(K(⋅)(1+|Xu|)m2√ρ)]dξ≤−∫Bρ(ξ0)[|vρ|√ρ+K2(⋅)(1+|Xu|)mμ(√ρ)]dξ≤−∫Bρ(ξ0)[|vρ|√ρ+K2(⋅)(1+|Xl|)mμ(√ρ)+K2(⋅)(|Xu−Xl|)mμ(√ρ)]dξ. | (3.34) |
To further estimate the term V′, we divide the ball Bρ(ξ0) into four parts.
Case 1: Bρ(ξ0)∩{|v/ρ|>1}∩{|Xu−Xl|≤1}. By Young's inequality, the estimates of (2.9) and (2.10), and Sobolev–Poincaré inequality (2.11), it follows that
|vρ|√ρ+K2(⋅)(1+|Xl|)mμ(√ρ)+K2(⋅)(|Xu−Xl|)mμ(√ρ)≤C(m,M)(Cp+1)|V(Xu−Xl)|2+K4/(2−m)(⋅)(2+|Xl|)mμ(√ρ), |
where we have used the fact that ρ≤μ(ρ)≤μ(√ρ).
Case 2: Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xu−Xl|≤1}. It yields
|vρ|√ρ+K2(⋅)(1+|Xl|)mμ(√ρ)+K2(⋅)(|Xu−Xl|)mμ(√ρ)≤C(m,M)(Cp+1)|V(Xu−Xl)|2+K4/(2−m)(⋅)(2+|Xl|)mμ(√ρ). |
Case 3: Bρ(ξ0)∩{|v/ρ|≤1}∩{|Xu−Xl|>1}. It follows
|vρ|√ρ+K2(⋅)(1+|Xl|)mμ(√ρ)+K2(⋅)(|Xu−Xl|)mμ(√ρ)≤C(m,M)(Cp+K2)|V(Xu−Xl)|2+K2(⋅)(2+|Xl|)mμ(√ρ). |
Case 4: Bρ(ξ0)∩{|v/ρ|>1}∩{|Xu−Xl|>1}. It leads to
|vρ|√ρ+K2(⋅)(1+|Xl|)mμ(√ρ)+K2(⋅)(|Xu−Xl|)mμ(√ρ)≤C(m,M)(Cp+K2)|V(Xu−Xl)|2+K2(⋅)(2+|Xl|)mμ(√ρ). |
Combining these estimates above, we obtain:
V′≤−∫Bρ(ξ0)K(⋅)(1+|Xu|)m2μ(|v|)dξ≤C(m,M)(Cp+K2(⋅))−∫Bρ(ξ0)|V(Xu−Xl)|2dξ+K4/(2−m)(⋅)(2+|Xl|)mμ(√ρ)≤C(m,M)(Cp+K2(⋅))Φ(ξ0,p0,Xl)+K4/(2−m)(⋅)(2+|Xl|)mμ(√ρ). | (3.35) |
Substituting (3.28), (3.29)–(3.33), and (3.35) into (3.25), we can immediately conclude that (3.23) holds.
In this part, we apply linearization tools and A-harmonic approximation techniques to establish improved estimates for the excess functional Φ. For sake of simplicity, motivated by the form of the Caccioppoli-type inequalities, we set the following re-normalized excess functionals:
Φ(ξ0,ρ,l)=−∫Bρ(ξ0)∣V(Xu−Xl)∣2dξ, |
and
Ψ(ξ0,ρ,l)=−∫Bρ(ξ0)|V(u−u0−Xl(ξ1−ξ10)ρ)|2dξ+−∫Bρ(ξ0)|u−u0−Xl(ξ1−ξ10)ρ|2dξ. |
Lemma 3.4. Let u∈HW1,m(Ω,RN)∩L∞(Ω,RN) satisfy the conditions of Theorem 1.1. Assume that the following smallness conditions are satisfied:
ω(|(Xu)ξ0,ρ|,Φ12(ξ0,ρ,(Xu)ξ0,ρ))+Φ12(ξ0,ρ,(Xu)ξ0,ρ)≤δ4, | (3.36) |
C2F2(|uξ0,ρ|,|(Xu)ξ0,ρ|)μ(√ρ)≤δ2, | (3.37) |
with C2=8C21C2(m,M)C4, together with the condition
ρ≤ρm(2−m)(m−1)1(1+|uξ0,ρ|,1+|(Xu)ξ0,ρ|). | (3.38) |
Then, we have the excess estimate for τ∈[γ,1):
Φ(ξ0,θρ,(Xu)ξ0,θρ)≤θ2τΦ(ξ0,ρ,(Xu)ξ0,ρ)+K∗(|uξ0,ρ|,|(Xu)ξ0,ρ|)μ2(ρσ), | (3.39) |
where σ=min{(2−m)(m−1)/m,(m−1)/2}, and K∗(s,t)=C7H2/(m−1)2(2−m)(s,M+t).
Proof. For simplicity, we use the abbreviation Φ(ρ)=Φ(ξ0,ρ,(Xu)ξ0,ρ) in what follows. For ε>0 (to be determined later), we take δ∈(0,1) and Υ∈[0,1] to be the corresponding constant from the A-harmonic approximation lemma and set
ω=u−(uξ0,ρ−Υhξ0,2θρ)−(Xu)ξ0,ρ(ξ1−ξ10),Υ=˜CΓ(ρ)with˜C=max{C1,√Cc}, | (3.40) |
and
Γ(ρ)=√(δ4)−2Φ(ρ)+Ψ(ρ)+(δ4)−2Φ2m(ρ)+16δ−2μ2(√ρ)F(|uξ0,ρ|,|(Xu)ξ0,ρ|). | (3.41) |
Noting the smallness assumptions in (3.36) and (3.37), we infer that
ω(|(Xu)ξ0,ρ|,Φ12(ξ0,ρ,(Xu)ξ0,ρ))+Φ12(ξ0,ρ,(Xu)ξ0,ρ)≤δ4, | (3.42) |
|−∫Bρ(ξ0)[Aαi,pjβ(ξ0,uξ0,ρ,(Xu)ξ0,ρ)Xω]Xiφαdξ|≤Υω(|(Xu)ξ0,ρ|,Φ1/2(ρ))Φ1/2(ρ)+Φ(ρ)+Φ1/2(ρ)+Φ1/m(ρ)+μ(√ρ)F(|uξ0,ρ|,|(Xu)ξ0,ρ|)C(m,M)Γ(ρ)supBρ(ξ0)|Xφ|≤Υ[δ4(ω(|(Xu)ξ0,ρ|,Φ1/2(ρ))+Φ1/2(ρ))+δ4+δ4+δ4]supBρ(ξ0)|Xφ|≤Υ[ω(|(Xu)ξ0,ρ|,Φ1/2(ρ))+Φ1/2(ρ)+3δ4]supBρ(ξ0)|Xφ|≤ΥδsupBρ(ξ0)|Xφ|. | (3.43) |
Then, from the definition of Υ and the Caccioppoli-type inequality (3.6) with l=lξ0,ρ
−∫Bρ(ξ0)|V(Xω)|2dξ≤Cc(Ψ(ρ)+F)≤Υ2≤1. | (3.44) |
We observe that (3.43) and (3.44) fulfill the conditions of the A-harmonic approximation lemma, which ensures that we find an A-harmonic function h∈HW1,m(Bρ(ξ0),RN) such that
−∫Bρ(ξ0)|V(Xh)|2dξ≤1,−∫Bρ(ξ0)|V(ω−Υhρ)|2dξ≤Υ2ε. | (3.45) |
With the help of Lemma 2.2,
Φ(θρ)=−∫Bρ(ξ0)|V(Xu)−V((Xu)ξ0,θρ)|2dξ≤C(m,M)−∫Bρ(ξ0)|V(Xu−(Xu)ξ0,θρ)|2dξ≤C(m,M)−∫Bρ(ξ0)|V(Xu−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ))|2dξ+C(m,M)|V((Xu)ξ0,θρ−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ))|2. | (3.46) |
Next, we proceed to estimate the right-hand side of (3.46), by decomposing Bθρ(ξ0) into a set with
B1=Bθρ(ξ0)∩{|Xu−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ)|≤1}, |
and
B2=Bθρ(ξ0)∩{|Xu−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ)|>1}. |
Then, by Lemma 2.2 (1) and Hölder's inequality, we obtain:
|(Xu)ξ0,θρ−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ)|=|−∫Bθρ(ξ0)|Xu−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ)|dξ|≤√2[−∫Bθρ(ξ0)|V(Xu−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ))|2dξ]12+m√2[−∫Bθρ(ξ0)|V(Xu−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ))|2m⋅mdξ]1m≤m√2(E12+E1m), | (3.47) |
where we have used the term
E=:−∫Bθρ(ξ0)|V(Xu−(Xu)ξ0,ρ−Υ(Xh)(ξ0,2θρ))|2dξ. | (3.48) |
Since V(ζ) is monotone increasing in ζ, it follows that, from (3.46),
Φ(θρ)≤C(E+V2(E1/2+E1/m))≤C(E+E2/m). | (3.49) |
Now it remains for us to estimate E, noting that
−∫Bρ(ξ0)|Xh|dξ≤2√2−∫Bρ(ξ0)|V(Xh)|2dξ≤2√2. | (3.50) |
Note that the smallness conditions in (3.36) and (3.37) imply that C4Υ2≤1 with C4=max{8C0,(2θ)−Q}, where we have assumed 4C21C2(m,M)C4≤1, which is no restriction. By applying the priori estimate for constant coefficients sub-elliptic systems, we have the following:
Υ|(Xh)(ξ0,2θρ)|≤ΥsupBρ/2(ξ0)|Xh|≤Υ√C0−∫Bρ(ξ0)|Xh|dξ≤2√2Υ√C0≤1. | (3.51) |
The Caccioppoli-type inequality applied to Bθρ(ξ0) with u0=uξ0,ρ, Xl=(Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ), and θ∈(0,1/4] yields
E≤Cc[−∫B2θρ(ξ0)|V(u−uξ0,ρ−((Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ))(ξ1−ξ10)2θρ)|2dξ+−∫B2θρ(ξ0)|u−uξ0,ρ−((Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ))(ξ1−ξ10)2θρ|2dξ+F], | (3.52) |
where
F=[K(|uξ0,ρ|+|(Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ)|)(1+|(Xu)ξ0,ρ+γ(Xh)(ξ0,2θρ)|)]2m/(m−1)μ2((2θρ)(2−m)(m−1)/m)+(1+2M+|(Xu)ξ0,ρ+γ(Xh)(ξ0,2θρ)|)m/(m−1)2(2θρ)m−1+μ2((2θρ)(2−m)(m−1)/m)[2a(2+|Xl|)+b]2/(m−1)(2−m)2θρ. | (3.53) |
By Lemma 2.2, one gets
−∫B2θρ(ξ0)|V(u−uξ0,ρ−((Xu)ξ0,ρ+Υ(Xh)ξ0,2θρ)(ξ1−ξ10)2θρ)|2dξ≤−∫B2θρ(ξ0)|V(u−(uξ0,ρ−Υhξ0,2θρ)−(Xu)ξ0,ρ(ξ1−ξ10)−Υh(ξ)2θρ+Υh(ξ)−Υhξ0,2θρ−Υ(Xh)ξ0,2θρ(ξ1−ξ10)2θρ)|2dξ≤C[−∫B2θρ(ξ0)(|V(ω−Υh(ξ)2θρ)|2+|V(Υh(ξ)−hξ0,2θρ−(Xh)ξ0,2θρ(ξ1−ξ10)2θρ)|2)dξ]. | (3.54) |
To estimate the right-hand side, we employ (3.45) to infer that
−∫B2θρ(ξ0)|V(ω−Υh(ξ)2θρ)|2dξ≤C(2θ)−Q−2−∫Bρ(ξ0)|V(ω−Υh(ξ)ρ)|2dξ≤C(2θ)−Q−2Υ2ε. |
Using Lemma 2.2 and the Sobolev–Poincaré-type inequality in Lemma 2.3 leads to
−∫B2θρ(ξ0)|V(Υh(ξ)−hξ0,2θρ−(Xh)ξ0,2θρ(ξ1−ξ10)2θρ)|2dξ≤C2pΥ2−∫B2θρ(ξ0)|V(Xh(ξ)−(Xh)(ξ0,2θρ))|2dξ≤C4p(2θρ)2Υ2−∫B2θρ(ξ0)|V(X2h)|2dξ≤C4p(2θρ)2Υ2supBρ/2(ξ0)|X2h|2≤CC0C4p(2θ)2Υ2−∫Bρ(ξ0)|V(Xh)|2dξ≤C5θ2Υ2, | (3.55) |
where we assume that C5=4CC0C4p.
−∫B2θρ(ξ0)|u−uξ0,ρ−((Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ))(ξ1−ξ10)2θρ|2dξ≤−∫B2θρ(ξ0)|u−(uξ0,ρ−Υhξ0,2θρ)−(Xu)ξ0,ρ(ξ1−ξ10)−Υh(ξ)2θρ+Υh(ξ)−Υhξ0,2θρ−Υ(Xh)ξ0,2θρ(ξ1−ξ10)2θρ|2dξ≤C[−∫B2θρ(ξ0)|ω−Υh(ξ)2θρ|2+|Υh(ξ)−hξ0,2θρ−(Xh)ξ0,2θρ(ξ1−ξ10)2θρ|2dξ]. | (3.56) |
Now, we are in the position to estimate −∫B2θρ(ξ0)|ω−Υh(ξ)2θρ|2dξ. Since |V(ω−Υhρ)|2 is bounded almost everywhere (3.45), we denote its upper bound by M1. Lemma 2.2 (1) implies that
|ω−Υhρ|≤√2|V(ω−Υhρ)|≤√2M1,for|ω−Υhρ|≤1, |
and
|ω−Υhρ|≤(√2|V(ω−Υhρ)|)2m≤(√2M1)2m,for|ω−Υhρ|>1. |
Hence, we have
|ω−Υhρ|≤max{√2M1,(√2M1)2m}=M2. | (3.57) |
Furthermore, it leads to
−∫B2θρ(ξ0)|ω−Υh(ξ)2θρ|2dξ≤C(2θ)−Q−2−∫Bρ(ξ0)|ω−Υh(ξ)ρ|2dξ≤C(2θ)−Q−2M22−∫Bρ(ξ0)|ω−Υh(ξ)M2ρ|2dξ≤C2−Q−1θ−Q−2M22−∫Bρ(ξ0)|V(ω−Υh(ξ)M2ρ)|2dξ≤C(2θ)−Q−2−∫Bρ(ξ0)|V(ω−Υh(ξ)ρ)|2dξ≤C(2θ)−Q−2Υ2ε. | (3.58) |
Using Lemmas 2.2–2.4 and (3.45) yields
−∫B2θρ(ξ0)|Υh(ξ)−hξ0,2θρ−(Xh)ξ0,2θρ(ξ1−ξ10)2θρ|2dξ≤Υ2−∫B2θρ(ξ0)|h(ξ)−hξ0,2θρ−(Xh)ξ0,2θρ(ξ1−ξ10)2θρ|2dξ≤C2pΥ2−∫B2θρ(ξ0)|Xh(ξ)−(Xh)(ξ0,2θρ)|2dξ≤C4p(2θρ)2Υ2−∫B2θρ(ξ0)|X2h|2dξ≤Cθ2Υ2. | (3.59) |
Noting that Υ(Xh)ξ0,2θρ≤2√2√C0Υ≤1 and the definition of H(⋅), we obtain:
[K(|uξ0,ρ|+|(Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ)|)(1+|(Xu)ξ0,ρ+γ(Xh)(ξ0,2θρ)|)]2m/(m−1)μ2((2θρ)(2−m)(m−1)/m)≤[K(|uξ0,ρ|+|(Xu)ξ0,ρ+1|)(2+|(Xu)ξ0,ρ)]2m/(m−1)μ2(ρ(2−m)(m−1)/m)≤Hm/(m−1)(1+|uξ0,ρ|,|(Xu)(ξ0,ρ)|)μ2(ρ(2−m)(m−1)/m), | (3.60) |
and
(1+2M+|(Xu)ξ0,ρ+γ(Xh)(ξ0,2θρ)|)m/(m−1)2(2θρ)m−1+[2a(2+|Xl|)+b]2/(m−1)(2−m)2θρ≤[(2+2M+|(Xu)ξ0,ρ|)m/(m−1)2+[2a(2+|Xl|)+b]2/(m−1)(2−m)]μ2(ρ(m−1)/2), | (3.61) |
where we have used the fact μ2(ρ(m−1)/2)≥μ2(√ρ) and the nondecreasing property of μ.
Combining all the above estimates with (3.52) and letting ε=θQ+4, we arrive at
E≤C6[θ2Υ2+H2/(m−1)2(2−m)(|uξ0,ρ|,M+|(Xu)ξ0,ρ|)μ2(ρσ)], | (3.62) |
where σ=min{(2−m)(m−1)/m,(m−1)/2} and C6 depends only on Q,N,m,M,λ, and Cp. For any given τ∈(γ,1), choosing θ∈(0,14) suitably such that C3C6θ2≤θ2τ, we easily find (note the definition of γ)
Φ(θρ)≤θ2τ[Φ(ρ)+C7H2/(m−1)2(2−m)(|uξ0,ρ|,M+|(Xu)ξ0,ρ|)μ2(ρσ)]:=θ2τ[Φ(ρ)+K∗(|uξ0,ρ|,|(Xu)ξ0,ρ|)μ2(ρσ)], | (3.63) |
where the constant C7 has the same dependencies as C6 and(2−m)(m−1)/m≤3−2√2<1/2,K∗(s,t)=C7H2/(m−1)2(2−m)(s,M+t).
For T>0, we find Φ0(T)>0 (depending on Q,N,λ,L,τ and ω) such that
ω12(2T,2Φ120(T))+2Φ120(T))≤14δ, | (3.64) |
and
16(2C21)2m(1+C2mp)2Φ0(T)≤θ2Q(1−θτ)2T2. | (3.65) |
With Φ0(T) from (3.64) and (3.65), we choose ρ0(T)∈(0,1] (depending on Q,N,λ,L,τ,ω,η and κ) such that
ρ0(T)≤ρ(2−m)(m−1)/m1(1+2T,1+2T), | (3.66) |
C2F2(2T,2T)μ2(ρ0(T))≤δ2, | (3.67) |
K0(T)μ(ρ0(T)2)≤(θσγ−θ2τ)Φ0(T), | (3.68) |
4(2C21)2m(1+C2mp)2K0(T)H(ρ0(T))2≤θ2Q(1−θγ)2(θσγ−θ2τ)T2, | (3.69) |
where K0(T):=K∗(2T,2T).
The rest of the process to obtain Theorem 1.1 is very similar to that in [12]. We omit it here.
Beibei Chen: formal analysis, methodology, writing–original draft; Jialin Wang: formal analysis, methodology, writing–original draft, funding acquisition, supervision, writing–review and editing; Dongni Liao: formal analysis, methodology, funding acquisition, supervision, writing–review and editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors express their gratitude to the referees for their insightful comments and valuable suggestions. This research is supported by the National Natural Science Foundation of China (No. 12061010), Jiangxi Provincial Natural Science Foundation (No. 20242BAB26003), and the Science and Technology Planning Project of Jiangxi Province (No. GJJ2201204).
The authors declare no competing interests.
[1] |
A. D. Austin, J. T. Tyson, A new proof of the C∞ regularity of C2 conformal mappings on the Heisenberg group, Colloq. Math., 150 (2017), 217–228. http://dx.doi.org/10.4064/cm7193-3-2017 doi: 10.4064/cm7193-3-2017
![]() |
[2] |
E. Acerbi, N. Fusco, Regularity for minimizers of nonquadratic functionals: the case 1<p<2, J. Math. Anal. Appl., 140 (1989), 115–135. http://dx.doi.org/10.1016/0022-247X(89)90098-X doi: 10.1016/0022-247X(89)90098-X
![]() |
[3] |
V. Bögelein, F. Duzaar, N. A. Liao, C. Scheven, Gradient Hölder regularity for degenerate parabolic systems, Nonlinear Anal., 225 (2022), 113119. http://dx.doi.org/10.1016/j.na.2022.113119 doi: 10.1016/j.na.2022.113119
![]() |
[4] |
V. Bögelein, F. Duzaar, P. Marcellini, C. Scheven, Boundary regularity for elliptic systems with p,q-growth, J. Math. Pure. Appl., 159 (2022), 250–293. http://dx.doi.org/10.1016/j.matpur.2021.12.004 doi: 10.1016/j.matpur.2021.12.004
![]() |
[5] |
M. Bramanti, M. C. Zhu, Lp and Schauder estimates for nonvariational operators structured on H¨ormander vector fields with drift, Analysis and PDE., 6 (2013), 1793–1855. http://dx.doi.org/10.2140/apde.2013.6.1793 doi: 10.2140/apde.2013.6.1793
![]() |
[6] |
L. Capogna, Regularity of quasi-linear equations in the Heisenberg group, Commun. Pur. Appl. Math., 50 (1997), 867–889. http://dx.doi.org/10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3 doi: 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
![]() |
[7] |
L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263–295. http://dx.doi.org/10.1007/s002080050261 doi: 10.1007/s002080050261
![]() |
[8] |
L. Capogna, N. Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type, J. Eur. Math. Soc., 5 (2003), 1–40. http://dx.doi.org/10.1007/s100970200043 doi: 10.1007/s100970200043
![]() |
[9] |
G. Citti, S. Mukherjee, Regularity of quasi-linear equations with Hörmander vector fields of step two, Adv. Math., 408 (2022), 108593. http://dx.doi.org/10.1016/j.aim.2022.108593 doi: 10.1016/j.aim.2022.108593
![]() |
[10] |
S. H. Chen, Z. Tan, Optimal partial regularity results for nonlinear elliptic systems in Carnot groups, Discrete Cont. Dyn., 33 (2013), 3391–3405. http://dx.doi.org/10.3934/dcds.2013.33.3391 doi: 10.3934/dcds.2013.33.3391
![]() |
[11] |
F. Duzaar, J. F. Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation, Manuscripta Math., 103 (2000), 267–298. http://dx.doi.org/10.1007/s002290070007 doi: 10.1007/s002290070007
![]() |
[12] |
F. Duzaar, A. Gastel, Nonlinear elliptic systems with Dini continuous coefficients, Arch. Math., 78 (2002), 58–73. http://dx.doi.org/10.1007/s00013-002-8217-1 doi: 10.1007/s00013-002-8217-1
![]() |
[13] |
F. Duzaar, J. F. Grotowski, M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth, Annali di Matematica, 184 (2005), 421–448. http://dx.doi.org/10.1007/s10231-004-0117-5 doi: 10.1007/s10231-004-0117-5
![]() |
[14] |
G. W. Du, J. Q. Han, P. C. Niu, Interior regularity for degenerate equations with drift on homogeneous groups, RACSAM, 113 (2019), 587–604. http://dx.doi.org/10.1007/s13398-018-0500-5 doi: 10.1007/s13398-018-0500-5
![]() |
[15] |
F. Duzaar, G. Mingione, The p-harmonic approximation and the regularity of p-harmonic maps, Calc. Var., 20 (2004), 235–256. http://dx.doi.org/10.1007/s00526-003-0233-x doi: 10.1007/s00526-003-0233-x
![]() |
[16] |
F. Duzaar, G. Mingione, Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 735–766. http://dx.doi.org/10.1016/j.anihpc.2003.09.003 doi: 10.1016/j.anihpc.2003.09.003
![]() |
[17] | A. Domokos, On the regularity of p-harmonic functions in the Heisenberg group, PhD Thesis, University of Pittsburgh, 2004. |
[18] |
F. Duzaar, K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math., 546 (2002), 73–138. http://dx.doi.org/10.1515/CRLL.2002.046 doi: 10.1515/CRLL.2002.046
![]() |
[19] |
A. Föglein, Partial regularity results for sub-elliptic systems in the Heisenberg group, Calc. Var., 32 (2008), 25–51. http://dx.doi.org/10.1007/S00526-007-0127-4 doi: 10.1007/S00526-007-0127-4
![]() |
[20] | X. J. Feng, P. C. Niu, Interior regularity for degenerate elliptic equations with drift on homogeneous groups, J. Lie Theory, 23 (2013), 803–825. |
[21] |
Y. X. Hou, X. J. Feng, X. W. Cui, Global Hölder estimates for hypoelliptic operators with drift on homogeneous groups, Miskolc Math. Notes, 13 (2012), 337–347. http://dx.doi.org/10.18514/MMN.2012.458 doi: 10.18514/MMN.2012.458
![]() |
[22] |
F. W. Gehring, The Lp−integrability of the partial derivatives of quasiconformal mapping, Acta Math., 130 (1973), 265–277. http://dx.doi.org/10.1007/BF02392268 doi: 10.1007/BF02392268
![]() |
[23] |
M. Giaquinta, G. Modica, Modica, Partial regularity of minimisers of quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 185–208. http://dx.doi.org/10.1016/S0294-1449(16)30385-7 doi: 10.1016/S0294-1449(16)30385-7
![]() |
[24] |
Y. X. Hou, P. C. Niu, Weighted Sobolev-Morrey estimates for hypoelliptic operators with drift on homogeneous groups, J. Math. Anal. Appl., 428 (2015), 1319–1338. http://dx.doi.org/10.1016/j.jmaa.2015.03.080 doi: 10.1016/j.jmaa.2015.03.080
![]() |
[25] | E. Lanconelli, S. Polidoro, On a class of hypoelliptic evolution operators, Rendiconti del Seminario Matematico, 52 (1994), 29–63. |
[26] | E. Lanconelli, A. Pascucci, P. Sergio, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, STAMPA, 2 (2002), 243–265. |
[27] |
J. J. Manfredi, G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg group, Math. Ann., 339 (2007), 485–544. http://dx.doi.org/10.1007/s00208-007-0121-3 doi: 10.1007/s00208-007-0121-3
![]() |
[28] |
S. Mukherjee, X. Zhong, C1,α-Regularity for variational problems in the Heisenberg group, Anal. PDE, 14 (2021), 567–594. http://dx.doi.org/10.2140/apde.2021.14.567 doi: 10.2140/apde.2021.14.567
![]() |
[29] |
G. Mingione, A. Zatorska-Goldstein, X. Zhong, Gradient regularity for elliptic equations in the Heisenberg group, Adv. Math., 222 (2009), 62–129. http://dx.doi.org/10.1016/j.aim.2009.03.016 doi: 10.1016/j.aim.2009.03.016
![]() |
[30] | E. Shores, Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications, PhD Thesis, University of Arkansas, 2005. |
[31] | L. Simon, Lectures on geometric measure theory, Canberra: Australian National University Press, 1983. |
[32] |
J. L. Wang, D. N. Liao, Z. F. Yu, Hölder continuity for sub-elliptic systems under the sub-quadratic controllable growth in Carnot groups, Rend. Sem. Mat. Univ. Padova, 130 (2013), 169–202. http://dx.doi.org/10.4171/RSMUP/130-6 doi: 10.4171/RSMUP/130-6
![]() |
[33] |
J. L. Wang, M. C. Zhu, S. J. Gao, D. N. Liao, Regularity for sub-elliptic systems with VMO-coefficients in the Heisenberg group: the sub-quadratic structure case, Adv. Nonlinear Anal., 10 (2021), 420–449. http://dx.doi.org/10.1515/anona-2020-0145 doi: 10.1515/anona-2020-0145
![]() |
[34] |
S. Z. Zheng, Z. S. Feng, Regularity of subelliptic p-harmonic systems with subcritical growth in Carnot group, J. Differ. Equations, 258 (2015), 2471–2494. http://dx.doi.org/10.1016/J.JDE.2014.12.020 doi: 10.1016/J.JDE.2014.12.020
![]() |
[35] |
J. L. Zhang, P. C. Niu, C1,α-Regularity for quasilinear degenerate elliptic equation with a dirft term on the Heisenberg group, B. Sci. Math., 175 (2022), 103097. http://dx.doi.org/10.1016/j.bulsci.2022.103097 doi: 10.1016/j.bulsci.2022.103097
![]() |
[36] |
J. L. Zhang, J. L. Wang, Regularity for a nonlinear discontinuous subelliptic system with drift on the Heisenberg group, Adv. Math. Phys., 2022 (2022), 7853139. http://dx.doi.org/10.1155/2022/7853139 doi: 10.1155/2022/7853139
![]() |
[37] |
J. L. Zhang, J. L. Wang, Partial regularity for a nonlinear discontinuous sub-elliptic system with drift on the Heisenberg group: the superquadratic case, Complex Var. Elliptic, 69 (2024), 547–572. http://dx.doi.org/10.1080/17476933.2022.2152444 doi: 10.1080/17476933.2022.2152444
![]() |