Loading [MathJax]/jax/output/SVG/jax.js
Research article

Gradient regularity for nonlinear sub-elliptic systems with the drift term: sub-quadratic growth case

  • Received: 05 November 2024 Revised: 09 January 2025 Accepted: 13 January 2025 Published: 22 January 2025
  • MSC : 35B65, 35H20

  • This paper focuses on nonlinear sub-elliptic systems with drift terms in divergence form, under Dini continuity conditions, where the growth rate satisfies 2QQ+2<m<2, and Q represents the homogeneous dimension in the Heisenberg group. By generalizing the A-harmonic approximation technique to accommodate sub-quadratic growth, we establish the C1 regularity associated with the horizontal gradient of weak solutions away from a negligible set.

    Citation: Beibei Chen, Jialin Wang, Dongni Liao. Gradient regularity for nonlinear sub-elliptic systems with the drift term: sub-quadratic growth case[J]. AIMS Mathematics, 2025, 10(1): 1407-1437. doi: 10.3934/math.2025065

    Related Papers:

    [1] Yunsoo Jang . Global gradient estimates in directional homogenization. AIMS Mathematics, 2023, 8(11): 27643-27658. doi: 10.3934/math.20231414
    [2] Yu Jin, Qihua Huang, Julia Blackburn, Mark A. Lewis . Persistence metrics for a river population in a two-dimensional benthic-drift model. AIMS Mathematics, 2019, 4(6): 1768-1795. doi: 10.3934/math.2019.6.1768
    [3] Yuejiao Feng . Regularity of weak solutions to a class of fourth order parabolic variational inequality problems arising from swap option pricing. AIMS Mathematics, 2023, 8(6): 13889-13897. doi: 10.3934/math.2023710
    [4] Zhaoyue Sui, Feng Zhou . Pointwise potential estimates for solutions to a class of nonlinear elliptic equations with measure data. AIMS Mathematics, 2025, 10(4): 8066-8094. doi: 10.3934/math.2025370
    [5] Li-Ming Yeh . Lipschitz estimate for elliptic equations with oscillatory coefficients. AIMS Mathematics, 2024, 9(10): 29135-29166. doi: 10.3934/math.20241413
    [6] Hind H. G. Hashem, Asma Al Rwaily . Investigation of the solvability of $ n $- term fractional quadratic integral equation in a Banach algebra. AIMS Mathematics, 2023, 8(2): 2783-2797. doi: 10.3934/math.2023146
    [7] Renjie Chu, Peiyuan Jin, Hanli Qiao, Quanxi Feng . Intrusion detection in the IoT data streams using concept drift localization. AIMS Mathematics, 2024, 9(1): 1535-1561. doi: 10.3934/math.2024076
    [8] Özge Arıbaş, İsmet Gölgeleyen, Mustafa Yıldız . On the solvability of an initial-boundary value problem for a non-linear fractional diffusion equation. AIMS Mathematics, 2023, 8(3): 5432-5444. doi: 10.3934/math.2023273
    [9] Qitong Ou, Huashui Zhan . The viscosity solutions of a nonlinear equation related to the p-Laplacian. AIMS Mathematics, 2017, 2(3): 400-421. doi: 10.3934/Math.2017.3.400
    [10] Liu Yang, Lijun Yin, Zuicha Deng . Drift coefficient inversion problem of Kolmogorov-type equation. AIMS Mathematics, 2021, 6(4): 3432-3454. doi: 10.3934/math.2021205
  • This paper focuses on nonlinear sub-elliptic systems with drift terms in divergence form, under Dini continuity conditions, where the growth rate satisfies 2QQ+2<m<2, and Q represents the homogeneous dimension in the Heisenberg group. By generalizing the A-harmonic approximation technique to accommodate sub-quadratic growth, we establish the C1 regularity associated with the horizontal gradient of weak solutions away from a negligible set.



    In this paper, we consider the following nonlinear sub-elliptic systems with the drift term Tu under sub-quadratic natural growth conditions in the Heisenberg group Hn

    2ni=1XiAαi(ξ,u,Xu)Tu=Bα(ξ,u,Xu),α=1,2,,N, (1.1)

    where Ω is a bounded domain, and the horizontal gradient X={X1,,X2n} with the horizontal vector fields Xi(i=1,,2n) and the vertical vector fields T is defined (2.1) in the next section, u=(u1,,uN):ΩRN,Aαi(ξ,u,Xu):Ω×RN×R2n×NR2n×N, and Bα(ξ,u,Xu):Ω×RN×R2n×NRN.

    As is well known, operators with drift terms possess significant importance for research and application. For instance, the Kolmogorov–Fokker–Planck operator frequently arises in transport diffusion equations within physical science, natural science, and statistical models. Following the publication of Lanconelli and Polidoro's fundamental work [25], this type of operator has garnered increasing attention. For a comprehensive understanding of the Kolmogorov–Fokker–Planck operator, the readers may refer to [26], which reviews the class of Kolmogorov operators with constant coefficients. Within the family of Kolmogorov operators, homogeneous ones occupy a central role. Indeed, any Kolmogorov operator can be approximated, in an appropriate sense, by a homogeneous operator. For more regularity results concerning operators with drift terms, the readers may refer to previous studies [5,14,20,21,24] and the references therein. In particular, Austin and Tyson [1] achieved C-smoothness by the geometric analysis method for the following operator

    L=142nj=1X2j±3T (1.2)

    in the Heisenberg groups. Recently, Zhang and Niu [35] treated a quasi-linear sub-elliptic equation with drift in the Heisenberg group. For nonlinear discontinuous sub-elliptic systems with drift, Zhang and Wang [36,37] proved the partial C0,γ(0<γ<1) Hölder regularity of weak solutions.

    The findings in the study of weak solutions for sub-elliptic equations and systems without the drift term include several notable regularity results. These results are significant because they provide insights into the behavior of solutions under various conditions. For a comprehensive understanding, the readers are encouraged to consult the works of Domokos [17]; Capogna [6,7]; Manfredi and Mingione [27]; Mingione, Zatorska-Goldstein, and Zhong[29]; Mukherjee and Zhong [28]; and Citti and Mukherjee [9] for sub-elliptic equations, as well as the studies [8,19,30,33,34] for sub-elliptic systems. Among these contributions, a particularly noteworthy development is the extension of the A-harmonic approximation technique to noncommutative nil-potent Lie groups. This technique involves constructing approximate solutions that satisfy certain harmonic-like properties, which can then be used to deduce the regularity properties of the original solutions. By applying this method in the context of noncommutative nil-potent Lie groups, researchers have been able to establish optimal partial regularity for nonlinear sub-elliptic systems, involving different growth rates and variant structure coefficients. It is worth pointing out that the A-harmonic approximation method was introduced by Simon [31], and developed by Duzaar and Steffen [18] in the Euclidean space, and we refer the readers to [3,4,11,15,16] and the references therein for more results concerning nonlinear elliptic and parabolic systems.

    Therefore, we examine the technique of A-harmonic approximation to achieve C1 regularity for nonlinear sub-elliptic systems with the drift term Tu in the Heisenberg group. The primary novel aspect of this paper is our capacity to tackle the systems (1.1) that incorporate the drift term Tu, featuring a sub-quadratic growth rate, while relaxing the assumption on the principal coefficients to Dini continuity. We note that the first new challenge emerges due to the presence of the drift term Tu without any assumption of integrability. Then, we adopt a clever approach to avoid the requirement of integrability. In fact, we subtly employ the relationship

    T=XiXn+iXn+iXi,i=1,2,,n,

    and introduce a horizontal affine function l defined in (2.6) to derive a suitable estimate for the drift term Tu. In contrast to the sub-quadratic sub-elliptic systems without any drift term, as examined in [33] for the range 1<m<2, our scenario requires more stringent constraints 2QQ+2<m<2. This is primarily attributed to the fact that the estimates stemming from the drift term Tu cannot be incorporated into the existing estimates during the formulation of Caccioppoli-type inequalities; see Lemma 3.2. The second challenge arises from the sub-quadratic growth rate, which prevents us from utilizing L2-theory for functions in the horizontal Sobolev space HW1,m with 2QQ+2<m<2. For this reason, we choose the following excess functional

    Φ(ξ0,ρ,Xl)=Bρ(ξ0)|V(Xu)V(Xl)|2dξ,

    with Bρ(ξ0)u(ξ)dξ=|Bρ(ξ0)|1HnBρ(ξ0)u(ξ)dξ and V(A)=(1+|A|2)4m2, and establish decay estimates for Φ by a generalization of the A-harmonic approximation (Lemma 3.1) with the auxiliary function V in the Heisenberg groups.

    Now we are in the position to introduce the following structural assumptions for the coefficients Aαi and Bα that are essential for our analysis throughout the paper.

    (H1) The leading coefficient Aαi(ξ,u,p) is differentiable in p, and there exists a constant C such that

    |Aαi,pjβ(ξ,u,p)|C(1+|p|2)m22,(ξ,u,p)Ω×RN×R2n×N,2QQ+2<m<2, (1.3)

    where Aαi,pjβ(ξ,u,p)=Aαi(ξ,u,p)pjβ.

    (H2) The term Aαi(ξ,u,p) satisfies the following ellipticity condition

    Aαi,pjβ(ξ,u,p)ηαiηβjλ(1+|p|2)m22|η|2,ηR2n×N, (1.4)

    where λ is a positive constant.

    (H3) There exists a modulus of continuity μ:(0,)[0,) such that

    |Aαi(ξ,u,p)Aαi(˜ξ,˜u,p)|K(|u|)μ((dm(ξ,˜ξ)+|u˜u|m)1m)(1+|p|)m2, (1.5)

    where K():[0,)[0,) is monotonously nondecreasing. Without loss of generality, it is convenient to take K()1.

    (HN) (Natural growth condition) For |u|M=supΩ|u|, the nonhomogeneous term Bα(ξ,u,p) satisfies the following growth condition

    |Bα(ξ,u,p)|a|p|m+b, (1.6)

    where the positive constants a=a(M) and b=b(M) possibly depend on M>0.

    Without loss of generality, we can assume that

    (μ1) μ is nondecreasing with μ(0+)=0,μ(1)=1;

    (μ2) μ is concave, and rrγμ(r) is nonincreasing for some exponent γ(0,1);

    (μ3) Dini's condition M(r)=r0μ(ρ)ρdρ< holds for some r>0.

    Furthermore, (H1) implies that

    |Aαi(ξ,u,p)Aαi(ξ,u,˜p)|C(L)(1+|p|2+|˜p|2)m22|p˜p|.

    In addition, there exists a continuously non-negative and bounded function ω(s,t):[0,)×[0,)[0,), satisfying ω(s,0)=0 for all s. Furthermore ω(s,t) is monotonously nondecreasing in s for a fixed t and monotonously nondecreasing in t for a fixed s such that

    |Aαi,pjβ(ξ,u,p)Aαi,pjβ(ξ,u,˜p)|C(1+|p|2+|˜p|2)m22ω(|p|,|p˜p|2). (1.7)

    By the method of A-harmonic approximation to establish C1 regularity, the key point is to establish a certain excess decay estimate for the excess functional Φ. In the case where m2, this functional is given by

    Φ(ξ0,ρ,Xl)=Bρ(ξ0)[|XuXl|2+|XuXl|m]dξ. (1.8)

    However, in the case of the sub-quadratic 2QQ+2<m<2, one should establish the excess decay estimate for the following functional:

    Φ(ξ0,ρ,Xl)=Bρ(ξ0)|V(Xu)V(Xl)|2dξ.

    It is shown that if Φ(ξ0,ρ,Xl) is small enough on a ball Bρ(ξ0), then for some fixed θ(0,1), one has the excess improvement

    Φ(ξ0,θρ,(Xu)ξ0,θρ)θ2τΦ(ξ0,ρ,(Xu)ξ0,ρ)+K(|uξ0,ρ|,|(Xu)ξ0,ρ|)μ2(ρσ),

    where σ=min{(2m)(m1)/m,(m1)/2} and K(s,t)=C7H2/(m1)2(2m)(s,M+t) with positive constants C7. Iteration of this result leads to the excess decay estimate, which implies the regularity result.

    The main result in this paper is as follows:

    Theorem 1.1. Assume that the coefficients Aαi and Bα satisfy (H1)–(H3) and (HN) with (μ1)(μ3). Let uHW1,m(Ω,RN)L(Ω,RN) be a weak solution to the system (1.1) with 2a(1+3M)/[3m2C(M,m,n)]<λ and the constant C(M,m,n) in line with Lemma 2.2, i.e., for φC0(Ω,RN),

    ΩAαi(ξ,u,Xu)XiφαdξΩXiuXn+iφαdξ+ΩXn+iuXiφαdξ=ΩBα(ξ,u,Xu)φαdξ. (1.9)

    Then, there exists an open subset Ω0Ω, such that uC1(Ω0,RN). Moreover, ΩΩ0=Σ1Σ2 and the Haar measure (ΩΩ0)=0, where

    Σ1={ξ0Ω:limr0+sup(|(Xu)ξ0,r|)=},Σ2={ξ0Ω:limr0+infBr(ξ0)|V(Xu)V((Xu)ξ0,r)|2dξ>0}.

    In addition, for τ[γ,1) and ξ0Ω0, the derivative Xu has the modulus of continuity rrτ+M(r) in the neighborhood of ξ0.

    It is worth pointing out that the Haar measure in the Heisenberg groups with the underlying manifold R2n+1 is just the Lebesgue measure in R2n+1. Our result is optimal in the sense that when μ(ρ)=ργ,0<γ<1, we have M(r)=r0μ(ρ)ρdρ=γ1rγ, and we obtain C1,γ optimal Hölder regularity of weak solutions in that case; see [32] by Wang, Liao, and Yu.

    Remark 1.1. When we replace the condition in (1.6) with

    |Bα(ξ,u,p)|a|p|mε+b

    with ε>0 and omit the requirement 2a(1+3M)/[3m2C(M,m,n)]<λ in Theorem 1.1, the conclusion of Theorem 1.1 remains valid.

    In this section, we introduce the Heisenberg group Hn, some definitions of function spaces, and several elementary estimates which will be used later.

    The Heisenberg group Hn is defined as R2n+1 with the following group multiplication:

    :Hn×HnHn(ξ1,t)(˜ξ1,˜t)(ξ1+˜ξ1,t+˜t+12ni=1(xi˜yi˜xiyi)),

    for all ξ=(ξ1,t)=(x1,x2,,xn,y1,y2,,yn,t), ˜ξ=(˜ξ1,˜t)=(˜x1,˜x2,,˜xn,˜y1,˜y2,,˜yn,˜t). Its neutral element is 0, and its inverse of (˜ξ1,t) is given by (˜ξ1,t). In particular, the mapping (ξ,˜ξ)ξ˜ξ1 is smooth; therefore (Hn,) is a Lie group.

    The basic vector fields corresponding to its Lie algebra can be explicitly calculated, given by

    Xi=xiyi2t,Xn+i=yi+xi2t,T=t,i=1,2,,n. (2.1)

    The special structure of the commutators is

    T=[Xi,Xn+i]=[Xn+i,Xi]=XiXn+iXn+iXi,else[Xi,Xj]=0,and[T,T]=[T,Xi]=0,

    that is, (Hn,) is a nil-potent Lie group of step 2. X=(X1,,X2n) is called the horizontal gradient, and T is the vertical derivative.

    The homogeneous norm is defined by ||(ξ1,t)||Hn=(|ξ1|4+t2)1/4, and the metric induced by this homogeneous norm is given by

    d(˜ξ,ξ)=||ξ1˜ξ||Hn. (2.2)

    The measure used on Hn is the Haar measure (the Lebesgue measure in R2n+1), and the volume of the homogeneous ball BR(ξ0)={ξHn:d(ξ0,ξ)<R} is given by

    |BR(ξ0)|Hn=R2n+2|B1(ξ0)|HnωnRQ, (2.3)

    where the number

    Q=2n+2 (2.4)

    is called the homogeneous dimension of Hn, and the quantity ωn is the volume of the homogeneous ball of radius 1.

    Definition 2.1. Let ΩHn be an open set, where the horizontal Sobolev space HW1,m(Ω)(1m<) is defined as:

    HW1,m(Ω)={uLm(Ω)|XiuLm(Ω),i=1,2,,2n},

    which is a Banach space under the norm

    ||u||HW1,m(Ω)=||u||Lm(Ω)+2ni=1||Xiu||Lm(Ω), (2.5)

    and the spaces HW1,m0(Ω) is the completion of C0(Ω) under the norm (2.5).

    Definition 2.2. (Horizontal affine function). Let uL2(Bρ(ξ0),RN), ξ0R2n+1, and denote the horizontal components as ξ1=(x1,,xn,y1,,yn) and ξ10=(x10,,xn0,y10,,yn0). We call

    lξ0,ρ(ξ1)=lξ0,ρ(ξ10)+Xlξ0,ρ(ξ1ξ10) (2.6)

    the horizontal affine function.

    If the horizontal affine function lξ0,ρ(ξ1) is a minimizer of the functional

    lBρ(ξ0)|ul|2dξ,

    we then have

    lξ0,ρ(ξ10)=uξ0,ρ=Bρ(ξ0)udξ,

    and

    Xlξ0,ρ=Q2C0QQ+2ρ2Bρ(ξ0)u(ξ1ξ10)dξ.

    Lemma 2.1. (from [2]) For every 1<m<2, it holds that

    110(1+|p+s(˜pp)|2)m22ds(1+|p|2+|˜p|2)m228m1, (2.7)

    for any p,˜pR2n×N.

    From the fact that μ is nondecreasing, we conclude that sμ(t)sμ(s) for all 0ts. We also note that sμ(t)tμ(s)t for 0st and 0s1 by the nonincreasing property of rμ(r)r and μ(1)1. Combining both cases, we get

    sμ(t)sμ(s)+t,s[0,1],t>0.

    From (μ2), we deduce for θ(0,1),t>0, and jN that

    2γ(1θγ)μ1/2(θ2jt)=θ2jtθ2(j+1)tτγ21μ1/2(θ2jt)(θ2jt)γ/2dτθ2jtθ2(j+1)tμ1/2(τ)τdτ,

    which implies

    j=0μ1/2(θ2jt)γ2(1θγ)t0μ1/2(τ)τdτ:=γ2(1θγ)H(t). (2.8)

    This shows particularly that μ(t)γ24H2(t) for all t0, and ttγH(t) is also nonincreasing.

    Throughout the paper, we use the functions V=Vm,W=Wm:RnRn defined by

    V(ζ)=ζ/(1+|ζ|2)2m4,W(ζ)=ζ/(1+|ζ|2m)12

    for each ζRn and m>1.

    The purpose of introducing W is the fact that in contrast to |V|2m, the function |W|2m is convex. In fact, direct computation shows that W2m(t)=t2m(1+t2m)1m is a convex and monotone increasing function on [0,) with W2m(0)=0. Moreover, we have

    |W(ζ1+ζ22)|2m=W(|ζ1+ζ2|2)2mW(|ζ1|+|ζ2|2)2mW(|ζ1|)2m+W(|ζ2|)2m2=|W(ζ1)|2m+|W(ζ2)|2m2,

    for any ζ1,ζ2Rn.

    The following lemma includes some useful properties of the function V, as outlined in Lemma 2.1 from [22].

    Lemma 2.2. Let m(1,2) and V,W:RnRn be the functions defined above. Then, the following statements hold true for any ζ1,ζ2Rn and t>0:

    (1)12min(|ζ1|,|ζ1|m2)|V(ζ1)|min(|ζ1|,|ζ1|m2);

    (2)|V(tζ1)|max(t,tm2)|V(ζ1)|;

    (3)|V(ζ1+ζ2)|C(m)(|V(ζ1)|+|V(ζ2)|);

    (4)m2|ζ1ζ2||V(ζ1)V(ζ2)|/(1+|ζ1|2+|ζ2|2)m24C(m,n)|ζ1ζ2|;

    (5)|V(ζ1)V(ζ2)|C(m,n)|V(ζ1ζ2)|;

    (6)|V(ζ1ζ2)|C(m,M)|V(ζ1)V(ζ2)| for all ζ1 with |ζ2|M.

    The inequalities (1)–(3) also hold if V is replaced by W.

    For later purposes, we state the following two simple estimates, which can be easily deduced from Lemma 2.2 (1) and (6). For ζ1,ζ2Rn, |ζ2|M, and for |ζ1ζ2|1,

    |ζ1ζ2|2C(m,M)|V(ζ1)V(ζ2)|2. (2.9)

    When |ζ1ζ2|>1, it yields

    |ζ1ζ2|mC(m,M)|V(ζ1)V(ζ2)|2. (2.10)

    We introduce a Sobolev–Poincaré type inequality and a prior estimate specifically for the case of sub-quadratic growth of the Heisenberg groups. Detailed proofs for these assertions can be found in the work by Wang, Liao, and Yu [32].

    Lemma 2.3. (Sobolev–Poincaré type inequality) Let m(1,2) and uHW1,m(Bρ(ξ0),RN) with Bρ(ξ0)Ω; then

    (Bρ(ξ0)|W(uuξ0,ρρ)|2mmdξ)m2mCp(Bρ(ξ0)|W(Xu)|2dξ)12, (2.11)

    where m=mQQm is the Sobolev critical exponent of m. Furthermore, the analogous inequality is valid with W being replaced by V, as defined in (2.11). In particular, the inequality also holds if we substitute 2 for 2mm

    Lemma 2.4. Let uHW1,1(Ω,RN) be a weak solution of

    ΩAα,βi,jXjuβXiϕαdξ=0

    for any ϕC10(Ω,RN), where Aα,βi,j is a constant matrix satisfying the strong Legendre–Hadamard condition:

    Aα,βi,jηαηβμiμj>c|η|2|μ|2,ηRN,μRk.

    Then u is smooth. C01 exists such that for any Bρ(ξ0)Ω

    supBρ/2(ξ0)(|uuξ0,ρ|2+ρ2|Xu|2+ρ4|X2u|2)C0ρ2Bρ(ξ0)|Xu|2dξ. (2.12)

    We will conclude this section with the following lemma from [23], which will be used to establish Caccioppoli-type inequality.

    Lemma 2.5. Let f(t) be a non-negative bounded function defined for 0T0tT1. Suppose that for T0t<sT1, we have

    f(t)A(st)α+B(st)β+C+θf(s),

    where A,B,α,β, and θ are non-negative constants and θ<1. Then there exists a constant ˉC=ˉC(θ,α,β) such that for every ρ,R:T0ρ<RT1, we have

    f(ρ)ˉC[A(st)α+B(st)β+C].

    In this section, we mainly prove the Caccioppoli-type inequality for weak solutions of the systems (1.1) with drift. First, we state the result of the A-harmonic approximation lemma, specifically addressing the case of sub-quadratic growth in the Heisenberg group, as exemplified in [10] for more general Carnot groups. The proof is similar to that in the Euclidean space [13].

    Let Bil(R2n×N) denote the collection of bilinear forms defined in R2n×N, and suppose ABil(R2n×N). We say that a function hHW1,m(Ω,RN) is A-harmonic if h satisfies:

    ΩA(Xh,Xφ)dξ=0,φC10(Ω,RN). (3.1)

    Lemma 3.1. Let λ and L be fixed positive numbers 1<m<2, and n,NN with n2. If, for any given ε>0, there exists δ=δ(n,N,λ,L,ε)(0,1] with the following properties:

    (I) For any ABil(R2n×N) satisfying:

    A(v,v)λ|v|2,A(v,¯v)L|v||¯v|,v,¯vR2n×N, (3.2)

    (II) For any gHW1,m(Bρ(ξ0),RN) satisfying:

    Bρ(ξ0)V(Xg)2dξΥ21, (3.3)
    |Bρ(ξ0)A(Xg,Xφ)dξ|ΥδsupBρ(ξ0)|Xφ|,φC10(Bρ(ξ0),RN). (3.4)

    There then exists an A-harmonic function h

    hH={hHW1,m(Bρ(ξ0),RN)|Bρ(ξ0)V(Xh)2dξ1},

    such that

    Bρ(ξ0)|V(gΥhρ)|2dξΥ2ε. (3.5)

    We point out that Föglein, in [19], gave another version of the A-harmonic approximation lemma, which developed the case of quadratic growth in the Euclidean space [11] to super-quadratic growth in the Heisenberg group.

    In what follows, we assume that ρ1(s,t)=(1+s+t)1K(s+t)1, and K1(s,t)=(1+t)2mK4(s+t) for s,t0, and note that ρ11 and that sρ1(s,t),tρ1(s,t) are nonincreasing functions, where K() comes from (H3).

    To show Theorem 1.1, our first aim is to establish a suitable Caccioppoli-type inequality.

    Lemma 3.2. (Caccioppoli-type inequality) Let uHW1,m(Ω,RN)L(Ω,RN) be a weak solution to the system in (1.1) under the conditions (H1)–(H3) and (HN) and (μ1)(μ3) with 2a(1+3M)/[3m2C(M,m,n)]<λ. Then, for every ξ0Ω, and 0<ρρm(2m)(m1)1(|u0|,|Xl|), it holds that

    Bρ/2(ξ0)V(XuXl)2dξCc(Bρ(ξ0)|V(uu0Xl(ξ1ξ10)ρ)|2dξ+Bρ(ξ0)|uu0Xl(ξ1ξ10)ρ|2dξ+F) (3.6)

    with

    F=K()(1+|Xl|)]2m/(m1)μ2(ρ(2m)(m1)/m)+(1+2M+|Xl|ρ)m/(m1)2ρm1+[2a(2+|Xl|)+b]2/(m1)(2m)ρ, (3.7)

    where we define K()=K(|u0|+|Xl|), ξ1=(x1,x2,,xn,y1,y2,,yn) is the horizontal component of ξ=(x1,x2,,xn,y1,y2,,yn,t)Hn, and the constant Cc=Cc(n,N,m,λ,M).

    Proof. Let ηC0(Bρ(ξ0)) be a standard cut-off function satisfying 0η1,|Xη|<cρ, and η1 on Bρ/2(ξ0). We take v=u(ξ)u0Xl(ξ1ξ10) and l=u0+Xl(ξ1ξ10), and define the two functions

    φ=η2v,ϕ=(1η2)v.

    Then, one has

    Xφ+Xϕ=XuXl,

    and

    |V(Xφ)|,|V(Xϕ)|C(m)(|V(Xv)|+|V(vρ)|). (3.8)

    Using (H2), Lemma 2.1, and the elementary inequality

    1+|a|2+|ba|23(1+|a|2+|b|2), (3.9)

    we have

    Bρ(ξ0)[Aαi(ξ,u,Xl+Xφ)Aαi(ξ,u,Xl)]Xiφαdξ=Bρ(ξ0)[10dAαi(ξ,u,Xl+θXφ)dθ]Xiφαdξ=Bρ(ξ0)10Aαi(ξ,u,Xl+θXφ)pβjdθXjφβXiφαdξλBρ(ξ0)10[1+|Xl+θ((Xφ+Xl)Xl)|2]m22dθ|Xφ|2dξλBρ(ξ0)(1+|Xl|2+|XφXl|2)m22|Xφ|2dξ3m22λBρ(ξ0)(1+|Xl|2+|Xφ|2)m22|Xφ|2dξ. (3.10)

    From (3.10), it follows that

    3m22λBρ(ξ0)(1+|Xl|2+|Xφ|2)m22|Xφ|2dξBρ(ξ0)[Aαi(ξ,u,Xl+Xφ)Aαi(ξ,u,Xl)]Xiφαdξ=Bρ(ξ0)Aαi(ξ,u,Xu)XiφαdξBρ(ξ0)Aαi(ξ,u,Xl)Xiφαdξ+Bρ(ξ0)[Aαi(ξ,u,Xl+Xφ)Aαi(ξ,u,Xu)]XiφαdξBρ(ξ0)XiuXn+iφαdξBρ(ξ0)Xn+iuXiφαdξ+Bρ(ξ0)Bα(ξ,u,Xu)φαdξBρ(ξ0)[Aαi(ξ,u,Xl)Aαi(ξ,u0+Xl(ξ1ξ10),Xl)]XiφαdξBρ(ξ0)[Aαi(ξ,u0+Xl(ξ1ξ10),Xl)Aαi(ξ0,u0,Xl)]XiφαdξBρ(ξ0)10Aαi(ξ,u,Xuθ(XuXφXl))pβjdθXjϕβXiφαdξ=I+II+III+IV+V. (3.11)

    Noting that Aαi(ξ0,u0,Xl) is a constant, we have

    Bρ(ξ0)Aαi(ξ0,u0,Xl)Xφαdξ=0.

    By the condition φ=v on Bρ/2(ξ0), the elementary inequality 1+|a|2+|ba|23(1+|a|2+|b|2), and the fact that m22<0 holds true for 2QQ+2<m<2, the left-hand side of (3.11) can be estimated by

    3m22λBρ/2(ξ0)(1+|Xl|2+|Xφ|2)m22|Xφ|2dξ=3m22λBρ/2(ξ0)(1+|Xl|2+|Xv|2)m22|Xv|2dξ=3m22λBρ/2(ξ0)(1+|Xl|2+|XuXl|2)m22|XuXl|2dξ3m22λBρ/2(ξ0)[3(1+|Xl|2+|Xu|2)]m22|XuXl|2dξ=3m2λBρ/2(ξ0)[(1+|Xl|2+|Xu|2)m24|XuXl|]2dξ3m2λC(m,n)Bρ/2(ξ0)|V(Xu)V(Xl)|2dξ3m2λC(M,m,n)Bρ/2(ξ0)|V(XuXl)|2dξ=3m2λC(M,m,n)Bρ/2(ξ0)|V(Xv)|2dξ, (3.12)

    where we have applied the fact that Xv=XuXl, Lemma 2.2 (4) in the third inequality from the end, Lemma 2.2 (6) in the penultimate inequality.

    We are in the position to estimate the term I. By the fact that Tl=XiXn+ilXn+iXil=0 and the condition |Tη|Cρ2, it leads to

    I=Bρ(ξ0)XiuXn+i(η2(ul))dξBρ(ξ0)Xn+iuXi(η2(ul))dξ=Bρ(ξ0)Xi(ul)Xn+i(η2(ul))dξ+Bρ(ξ0)XilXn+i(η2(ul))dξBρ(ξ0)Xn+i(ul)Xi(η2(ul))dξBρ(ξ0)Xn+ilXi(η2(ul))dξ=Bρ(ξ0)η2Xi(ul)Xn+i(ul)dξ+Bρ(ξ0)2ηXn+iηXi((ul)2)dξBρ(ξ0)Xn+iXil(η2(ul))dξBρ(ξ0)η2Xn+i(ul)Xi(ul)dξBρ(ξ0)2ηXiηXn+i((ul)2)dξ+Bρ(ξ0)XiXn+il(η2(ul))dξBρ(ξ0)ηXn+iηXi((ul)2)dξBρ(ξ0)ηXiηXn+i((ul)2)dξBρ(ξ0)ηXiXn+iη(ul)2dξ+Bρ(ξ0)ηXn+iXiη(ul)2dξBρ(ξ0)ηTη(ul)2dξCBρ(ξ0)|ulρ|2dξ. (3.13)

    Applying Hölder's inequality, we infer that

    II=Bρ(ξ0)Bα(ξ,u,Xu)φαdξBρ(ξ0)(a|Xu|m+b)|v|η2dξBρ(ξ0)(a|Xu|m|v|η2+b|v|η2)dξBρ(ξ0)[(a(1+μ)|XuXl|m+(1+1μ)|Xl|m)|v|η2+bρη2|vρ|]dξ. (3.14)

    To obtain a suitable estimate for II, we need to split the domain Bρ(ξ0) into four parts: Bρ(ξ0){|v/ρ|>1}{|XuXl|1}, Bρ(ξ0){|v/ρ|>1}{|XuXl|>1}, Bρ(ξ0){|v/ρ|1}{|XuXl>1}, and Bρ(ξ0){|v/ρ|1}{|XuXl|1}. We then use Young's inequality, and note that |v|=|uu0Xl(ξ1ξ10)|2M+|Xl|ρ on Bρ(ξ0) to have the following estimates.

    Case 1: For Bρ(ξ0){|XuXl|>1}{|v/ρ|1}, it follows that

    (a(1+μ)|XuXl|m+a(1+1μ)|Xl|m)|v|η2+(bρη2)|vρ|a(1+μ)(2M+Xlρ)|XuXl|m+a(1+1μ)|Xl|mη2ρ|vρ|+bρη2aC(m,M)(1+μ)(2M+Xlρ)|V(Xv)|2+a(1+1μ)|Xl|mρ+bρ.

    Case 2: For the set Bρ(ξ0){|XuXl|>1}{|v/ρ|>1}, we have

    (a(1+μ)|XuXl|m+a(1+1μ)|Xl|m)|v|η2+(bρη2)|vρ|a(1+μ)(2M+Xlρ)|XuXl|m+a(1+1μ)|Xl|mη2ρ|vρ|+ε(bρη2)mm1+C(ε)|vρ|maC(m,M)(1+μ)(2M+Xlρ)|V(Xv)|2+ε(bρ)mm1+ε[a(1+1μ)|Xl|mρ]mm1+C(ε,m,M)|V(vρ)|2.

    Case 3: For Bρ(ξ0){|XuXl|1}{|v/ρ|1}, we get

    (a(1+μ)|XuXl|m+a(1+1μ)|Xl|m)|v|η2+(bρη2)|vρ|ε|XuXl|2+C(ε)[a(1+μ)ρ]2/(2m)+a(1+1μ)|Xl|mη2ρ+bρη2εC(m,M)|V(Xv)|2+C(ε)[a(1+μ)ρ]2/(2m)+a(1+1μ)|Xl|mρ+bρ.

    Case 4: For the case where Bρ(ξ0){|XuXl|1}{|v/ρ|>1}, one obtains

    (a(1+μ)|XuXl|m+a(1+1μ)|Xl|m)|v|η2+(bρη2)|vρ|=a(1+μ)|XuXl|m|v|η2ρm(2m)2ρm(m2)2+a(1+1μ)|Xl|m|v|η2+(bρη2)|vρ|ερ2m|XuXl|2+C(ε)(a(1+μ))22m(2M+Xlρ)22m+m22m|vρ|m+ε[a(1+1μ)|Xl|mρη2]mm1+ε(bρη2)mm1+C(ε)|vρ|mεC(m,M)|V(Xv)|2+C(ε,m,M)(a(1+μ))22m(2M+Xlρ)22m+m22m|V(vρ)|2+ε[a(1+1μ)|Xl|mρ]mm1+ε(bρ)mm1+C(ε,m,M)|V(vρ)|2.

    Combining these estimates in II, we have

    IIaC(m,M)(1+μ)(1+3M)Bρ(ξ0)|V(Xv)|2dξ+C(ε,μ,m,M,a)Bρ(ξ0)|V(vρ)|2dξ+Cmax{[a(1+1μ)]m/(m1)|Xl|m(1+|Xl|m/(m1))+[a(1+μ)]22m+bm/(m1)}ρ2, (3.15)

    where we have used |Xl|M+1.

    The condition (H3) yields the following (note that m1<m/2):

    III=Bρ(ξ0)[Aαi(ξ,u,Xl)Aαi(ξ,u0+Xl(ξ1ξ10),Xl)]XiφαdξBρ(ξ0)K()(1+|Xl|)m2μ(|v|)|Xφ|dξ, (3.16)

    where we have used the inequality sμ(t)sμ(s)+t for s[0,1] and t>0.

    To obtain a suitable estimate for III, we need to split the domain Bρ(ξ0) into four parts: Bρ(ξ0){|v/ρ|>1}{|Xφ|1},Bρ(ξ0){|v/ρ|>1}{|Xφ|>1},Bρ(ξ0){|v/ρ|1}{|Xφ>1}, and Bρ(ξ0){|v/ρ|1}{|Xφ|1}. We use Young's inequality, (2.9), and (2.10) repeatedly.

    Case 1: For the set Bρ(ξ0){|v/ρ|>1}{|Xφ|>1},

    [K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)+|v|ρ(2m)(m1)/m]|Xφ|2ε|Xφ|m+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]m/(m1)+ε1|v|m/(m1)ρm22ε|Xφ|m+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]m/(m1)+ε1|vρ||v|1/(m1)ρm12ε|Xφ|m+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]m/(m1)+ε1|vρ|m+ε1|v|m/(m1)2ρm2εC(m,M)|V(Xφ)|2+ε1C(m,M)|V(vρ)|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]m/(m1)+ε1|2M+Xlρ|m/(m1)2ρm.

    Case 2: For Bρ(ξ0){|v/ρ|>1}{|Xφ|1},

    [K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)+|v|ρ(2m)(m1)/m]|Xφ|2ε|Xφ|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]2+ε1|vρ||v|ρ(m2)2(m1)mρ2ε|Xφ|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]2+ε1|vρ||v|ρm2ρ2ε|Xφ|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]2+ε1|vρ|m+ε1|v|m/(m1)ρm2εC(m,M)|V(Xφ)|2+ε1C(m,M)|V(vρ)|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]2+ε1|2M+Xlρ|m/(m1)ρm,

    where we have used the facts that 2(m1)/m<1.

    Case 3: For Bρ(ξ0){|v/ρ|1}{|Xφ|>1}, observing that m/(m1)>2, one has

    [K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)+|v|ρ(2m)(m1)/m]|Xφ|2ε|Xφ|m+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]m/(m1)+ε1|v|m/(m1)ρm22ε|Xφ|m+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]m/(m1)+ε1|vρ||v|1/(m1)ρm12εC(m,M)|V(Xφ)|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]m/(m1)+ε1|2M+Xlρ|1/(m1)ρm1.

    Case 4: For the case of Bρ(ξ0){|v/ρ|1}{|Xφ|1},

    [K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)+|v|ρ(2m)(m1)/m]|Xφ|2ε|Xφ|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]2+ε1|vρ|2ρ(m2)2(m1)mρ22ε|Xφ|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]2+ε1ρm2ρ22εC(m,M)|V(Xφ)|2+ε1[K2()(1+|Xl|)mμ(ρ(2m)(m1)/m)]2+ε1ρm,

    where we have used the fact that 2(m1)/m<1.

    Combining these estimations with (3.15), we get

    IIIεC(m,M)Bρ(ξ0)|V(Xv)|2dξ+C(ε,m,M)Bρ(ξ0)|V(vρ)|2dξ+ε1K2m/(m1)()(1+|Xl|)m2/(m1)μ2(ρ(2m)(m1)/m)+ε1(1+2M+Xlρ)m/(m1)2ρm1. (3.17)

    We apply (H3) to get (noting that m/(m1)<2)

    IV=Bρ(ξ0)[Aαi(ξ,u0+Xl(ξ1ξ10),Xl)Aαi(ξ0,u0,Xl)]XiφαdξBρ(ξ0)K()(1+|Xl|)m+22μ(ρ)|Xφ|dξ. (3.18)

    To obtain a suitable estimate for IV, we need to split the domain Bρ(ξ0) into four parts: Bρ(ξ0){|v/ρ|>1}{|Xφ|1},Bρ(ξ0){|v/ρ|>1}{|Xφ|>1},Bρ(ξ0){|v/ρ|1}{|Xφ>1}, and Bρ(ξ0){|v/ρ|1}{|Xφ|1}. We use Young's inequality, (2.9), and (2.10) repeatedly.

    Case 1: Bρ(ξ0){|v/ρ|1}{|Xφ|>1} and Bρ(ξ0){|v/ρ|>1}{|Xφ|>1}, observing that m/(m1)>2,

    K()(1+|Xl|)m+22μ(ρ)|Xφ|dξε|Xφ|m+C(ε)[K()(1+|Xl|)m+22μ(ρ)]mm1εC(m,M)|V(Xφ)|2+C(ε)[K()(1+|Xl|)m+22μ(ρ)]mm1εC(m,M)|V(Xv)|2+εC(m,M)|V(vρ)|2+C(ε)[K()(1+|Xl|)m+22μ(ρ)]mm1.

    Case 2: Bρ(ξ0){|v/ρ|1}{|Xφ|1} and Bρ(ξ0){|v/ρ|>1}{|Xφ|1},

    K()(1+|Xl|)m+22μ(ρ)|Xφ|dξε|Xφ|2+ε1[K()(1+|Xl|)m+22μ(ρ)]2εC(m,M)|V(Xφ)|2+ε1[K()(1+|Xl|)m+22μ(ρ)]2εC(m,M)|V(Xv)|2+εC(m,M)|V(vρ)|2+ε1[K()(1+|Xl|)m+22μ(ρ)]2.

    Combining these estimations with (3.18), we get

    IVεC(m,M)Bρ(ξ0)|V(Xv)|2dξ+εC(m,M)Bρ(ξ0)|V(vρ)|2dξ+C(ε)K()mm1(1+|Xl|)m(m+2)2(m1)μ2(ρ), (3.19)

    where we used mm1>2,m(m+2)2(m1)>m+2.

    By (H1), Lemma 2.1, and (3.9), it holds that

    V=Bρ(ξ0)10Aαi(ξ,u,Xuθ(XuXφXl))pβjdθXjϕβXiφαdξCBρ(ξ0)[10(1+|Xu+θ(XuXφXl)|2)m22dθ]|Xϕ||Xφ|dξCBρ(ξ0)[10(1+|Xu+θ[(XuXϕ)Xu]|2)m22dθ]|Xϕ||Xφ|dξ8Cm1Bρ(ξ0)(1+|Xu|2+|XuXϕ|2)m22|Xϕ||Xφ|dξ8Cm1Bρ(ξ0)(1+|Xu|2+|Xϕ|2)m22|Xϕ||Xφ|dξ8Cm1Bρ(ξ0)(1+|Xϕ|2)m22|Xϕ||Xφ|dξ. (3.20)

    Noting that 1/2<m22<0, and ϕ=(1η)v=0 due to η=1 on Bρ/2(ξ0), we split the domain Bρ(ξ0) into four parts: Bρ(ξ0){|Xϕ|>1}{Xφ|>1},Bρ(ξ0){|Xϕ|1}{Xφ|1},Bρ(ξ0){|Xϕ|>1}{Xφ|1}, and Bρ(ξ0){|Xϕ|1}{Xφ|>1}. Thus by Young's inequality and the estimations in (2.9) and (2.10), there is

    VC(m,M)m1Bρ(ξ0)Bρ/2(ξ0)|V(XuXl)|2dξ+C(M,m,n)Bρ(ξ0)|V(vρ)|2dξ. (3.21)

    Substituting (3.12), (3.13), (3.15), (3.17), (3.19) and (3.21) into (3.11), we finally arrive at

    [3m2λC(M,m,n)+C(m,M)m1]Bρ/2(ξ0)|V(Xv)|2dξ[C(m,M)m1+(3ε+2a(1+3M))C(m,M)]Bρ(ξ0)|V(Xv)|2dξ+C(ε,a,n,m,M)Bρ(ξ0)|V(vρ)|2dξ+C(ε,a,n,m,M)Bρ(ξ0)|vρ|2dξ+C(ε)[K()(1+|Xl|)]2m/m1μ2(ρ(2m)(m1)/m)+(1+2M+|Xl|ρ)m/(m1)2ρm1+[2a(2+|Xl|)+b]2/(m1)(2m)ρ,

    where we have used 2m/(m1)>m(m+2)/2(m1)>m2/(m1) and the nondecreasing property of μ.

    We take ε=[3m2λC(M,m,n)2a(1+3M)]/6 with the assumption λ>2a(1+3M)/[3m2C(M,m,n)]. Filling the gaps with θ=C(m,M)m1+[3ε+2a(1+3M)C(M,m,n)]3m2λC(M,m,n)+C(m,M)m1<1 in Lemma 2.5 yields

    Bρ/2(ξ0)|V(XuXl)|2dξC(Bρ(ξ0)|V(vρ)|2dξ+Bρ(ξ0)|vρ|2dξ+F)+θBρ(ξ0)|V(XuXl)|2dξ,

    where

    F=[K()(1+|Xl|)]2m/(m1)μ2(ρ(2m)(m1)/m)+(1+2M+|Xl|ρ)m/(m1)2ρm1+[2a(2+|Xl|)+b]2/(m1)(2m)ρ. (3.22)

    The proof is completed by noting that [m(r1)/r(m1)1]Q=m/(m1) and ρm/(m1)ρ2(2m)(m1)/mμ2(ρ(2m)(m1)/m).

    In this section, we provide a linearization strategy for non-linear sub-elliptic systems (1.1). Later on, this will be the starting point for the application of the A-harmonic approximation lemma.

    Lemma 3.3. We claim that if ρρm(2m)(m1)1(|u0|,|Xl|) and φC0(Bρ(ξ0),RN) with supBρ(ξ0)|Xφ|1, then there exist some constants C1=C1(m,M,Cp,K)>1 such that

    Bρ(ξ0)Aαi,pjβ(ξ0,u0,Xl)(XuXl)XφαdξC1supBρ(ξ0)|Xφ|[ω(|Xl|,Φ12(ξ0,ρ,Xl))Φ12(ξ0,ρ,Xl)+Φ12(ξ0,ρ,Xl)+Φ(ξ0,ρ,Xl)+Φ1m(ξ0,ρ,Xl)+μ(ρ)F(|u0|,|Xl|)], (3.23)

    where we assume that F(s,t)=K4/(2m)(s+t)(2+t)2+a(1+tm)+b.

    Proof. A straightforward computation yields

    Bρ(ξ0)[10Aαi,pjβ(ξ0,u0,θXu+(1θ)Xl)(XuXl)dθ]Xφαdξ=Bρ(ξ0)[10ddθAαi(ξ0,u0,θXu+(1θ)Xl)dθ]Xφαdξ=Bρ(ξ0)[Aαi(ξ0,u0,Xu)Aαi(ξ,u,Xu)]Xφαdξ+Bρ(ξ0)Bα(ξ,u,Xu)φαdξ+Bρ(ξ0)XiuXn+iφαdξBρ(ξ0)Xn+iuXiφαdξ. (3.24)

    Then, we have

    Bρ(ξ0)Aαi,pjβ(ξ0,u0,Xl)(XuXl)Xφαdξ=Bρ(ξ0)[10Aαi,pjβ(ξ0,u0,Xl)dθ(XuXl)]XφαdξBρ(ξ0)XiuXn+iφαdξBρ(ξ0)Xn+iuXiφαdξ+CBρ(ξ0)(a|Xu|m+b)φαdξ+Bρ(ξ0){10|Aαi,pjβ(ξ0,u0,Xl)Aαi,pjβ(ξ0,u0,θXu+(1θ)Xl)||XuXl|dθ}supBρ(ξ0)|Xφ|dξ+Bρ(ξ0)|Aαi(ξ0,u0,Xu)Aαi(ξ,u0+Xl(ξ1ξ10),Xu)|supBρ(ξ0)|Xφ|dξ+Bρ(ξ0)|Aαi(ξ,u0+Xl(ξ1ξ10),Xu)Aαi(ξ,u,Xu)|supBρ(ξ0)|Xφ|dξ=I+II+III+IV+V, (3.25)

    where we have used the fact that Bρ(ξ0)Aαi(ξ0,u0,Xl)Xφαdξ=0.

    By the relationship of T=XiXn+iXn+iXi, the term I can be estimated as follows:

    I=Bρ(ξ0)XiuXn+iφαdξBρ(ξ0)Xn+iuXiφαdξ=Bρ(ξ0)Xi(ul)Xn+iφαdξ+Bρ(ξ0)XilXn+iφαdξBρ(ξ0)Xn+i(ul)XiφαdξBρ(ξ0)Xn+ilXiφαdξ=Bρ(ξ0)Xi(ul)Xn+iφαdξBρ(ξ0)Xn+i(ul)XiφαdξBρ(ξ0)Xn+iXilφαdξ+Bρ(ξ0)XiXn+ilφαdξ=Bρ(ξ0)Xi(ul)Xn+iφαdξBρ(ξ0)Xn+i(ul)XiφαdξsupBρ(ξ0)|Xφ|Bρ(ξ0)|XuXl|dξ. (3.26)

    Let

    B1=:Bρ(ξ0){|XuXl|1},B2=:Bρ(ξ0){|XuXl|>1}.

    It follows that

    Bρ(ξ0)|XuXl|dξ=B1|XuXl|dξ+B2|XuXl|dξ(B1|XuXl|2dξ)12+(B2|XuXl|mdξ)1mC[(Bρ(ξ0)|V(Xu)V(Xl)|2dξ)12+(Bρ(ξ0)|V(Xu)V(Xl)|2dξ)1m]C(Φ12(ξ0,ρ,Xl)+Φ1m(ξ0,ρ,Xl)). (3.27)

    We then obtain:

    IC(Φ12(ξ0,ρ,Xl)+Φ1m(ξ0,ρ,Xl)). (3.28)

    With the help of the fact that supBρ(ξ0)|φ|ρ1, we derive

    II=Bρ(ξ0)(a|Xu|m+b)|φ|dξ2m1ρ[Bρ(ξ0)a|XuXl|mdξ+(a|Xl|m+b)].

    For the case where B1=:Bρ(ξ0){|XuXl|1}, it follows, by Young's inequality and (2.9), that

    |XuXl|m|XuXl|m2m+122mC(m,M)|V(Xu)V(Xl)|2+1,

    and thus

    IIC(m,M)[B1a|V(Xu)V(Xl)|2dξ+(a|Xl|m+a+b)μ(ρ)].

    On the other hand, for B2=:Bρ(ξ0){|XuXl|>1}, it follows by Young's inequality and (2.10) that

    IIC(m,M)[B2a|V(Xu)V(Xl)|2dξ+(a|Xl|m+b)μ(ρ)].

    Thus, by combining these estimates and noting the definition of F(s,t), we infer that

    IIC(a,m,M)[Φ(ξ0,ρ,Xl)+[a(|Xl|m+1)+b]μ(ρ)]. (3.29)

    We can estimate the integrand of III in different ways depending on whether |XuXl|1 or |XuXl|>1.

    For the first case, |XuXl|1. Applying (1.7), Lemma 2.2 (1), Hölder's inequality, and Jensen's inequality leads to

    III=Bρ(ξ0)[10|Aαi,pjβ(ξ0,u0,Xl)Aαi,pjβ(ξ0,u0,θXu+(1θ)Xl)||XuXl|dθ]supBρ(ξ0)|Xφ|dξCBρ(ξ0){10[(1+|Xl|2+|Xl+θ(XuXl)|2)m22ω(|Xl|,|θ(XuXl)|)]dθ}|XuXl|dξCBρ(ξ0)ω(|Xl|,|XuXl|)|XuXl|dξCBρ(ξ0)ω(|Xl|,|V(XuXl)|)|V(XuXl)|dξCω(|Xl|,(Bρ(ξ0)|V(Xu)V(Xl)|2dξ)12)(Bρ(ξ0)|V(Xu)V(Xl)|2dξ)12=Cω(|Xl|,Φ12(ξ0,ρ,Xl))Φ12(ξ0,ρ,Xl). (3.30)

    For the second case, |XuXl|>1. By the assumption in (H1), Lemma 2.2(1), and 2QQ+2<m<2, one gets

    III=Bρ(ξ0)[10|Aαi,pjβ(ξ0,u0,Xl)Aαi,pjβ(ξ0,u0,θXu+(1θ)Xl)||XuXl|dθ]supBρ(ξ0)|Xφ|dξCBρ(ξ0){10[(1+|Xl|2)m22+(1+|Xl+θ(XuXl)|2)m22]dθ}|XuXl|dξCBρ(ξ0)|XuXl|dξCBρ(ξ0)|XuXl|mdξCBρ(ξ0)|V(Xu)V(Xl)|2dξ=CΦ(ξ0,ρ,Xl). (3.31)

    Combining the last two estimates mentioned above implies that

    III=Bρ(ξ0)[10|Aαi,pjβ(ξ0,u0,Xl)Aαi,pjβ(ξ0,u0,θXu+(1θ)Xl)||XuXl|dθ]supBρ(ξ0)|Xφ|dξCω(|Xl|,Φ12(ξ0,ρ,Xl))Φ12(ξ0,ρ,Xl)+CΦ(ξ0,ρ,Xl). (3.32)

    By employing (H3), Lemma 2.2, and Young's inequality, and noting the fact that K()>1, we deduce that

    IV=Bρ(ξ0)|Aαi(ξ0,u0,Xu)Aαi(ξ,u0+Xl(ξ1ξ10),Xu)|supBρ(ξ0)|Xφ|dξBρ(ξ0)K()μ(ρ)(1+|Xl|)(1+|Xu|)m2dξBρ(ξ0)K()μ(ρ)(1+|Xl|)[(1+|Xl|)m2+|XuXl|m2]dξK()μ(ρ)(1+|Xl|)1+m2+B1+B2K()μ(ρ)(1+|Xl|)|XuXl|m2dξK()μ(ρ)(1+|Xl|)1+m2+B1K()μ(ρ)(1+|Xl|)|XuXl|m2dξ+B2K()μ(ρ)(1+|Xl|)|XuXl|m2dξK()μ(ρ)(1+|Xl|)1+m2+[K()μ(ρ)(1+|Xl|)]2+[K()μ(ρ)(1+|Xl|)]44m+B2|XuXl|mdξ+B1|XuXl|2dξΦ(ξ0,ρ,Xl)+3[K()(1+|Xl|)]2μ(ρ), (3.33)

    where we have used the fact that 4/(4m)<2,1+m/2<2 and μ(ρ)1 for ρ[0,1].

    Using the inequality sμ(t)sμ(s)+t for s[0,1] and t>0, we obtain:

    V=Bρ(ξ0)|Aαi(ξ,u0+Xl(ξ1ξ10),Xu)Aαi(ξ,u,Xu)|dξBρ(ξ0)K()(1+|Xu|)m2μ(|v|)dξBρ(ξ0)1ρ[K()(1+|Xu|)m2ρ]μ(|v|)dξBρ(ξ0)1ρ[|v|+K()(1+|Xu|)m2ρμ(K()(1+|Xu|)m2ρ)]dξBρ(ξ0)[|vρ|ρ+K2()(1+|Xu|)mμ(ρ)]dξBρ(ξ0)[|vρ|ρ+K2()(1+|Xl|)mμ(ρ)+K2()(|XuXl|)mμ(ρ)]dξ. (3.34)

    To further estimate the term V, we divide the ball Bρ(ξ0) into four parts.

    Case 1: Bρ(ξ0){|v/ρ|>1}{|XuXl|1}. By Young's inequality, the estimates of (2.9) and (2.10), and Sobolev–Poincaré inequality (2.11), it follows that

    |vρ|ρ+K2()(1+|Xl|)mμ(ρ)+K2()(|XuXl|)mμ(ρ)C(m,M)(Cp+1)|V(XuXl)|2+K4/(2m)()(2+|Xl|)mμ(ρ),

    where we have used the fact that ρμ(ρ)μ(ρ).

    Case 2: Bρ(ξ0){|v/ρ|1}{|XuXl|1}. It yields

    |vρ|ρ+K2()(1+|Xl|)mμ(ρ)+K2()(|XuXl|)mμ(ρ)C(m,M)(Cp+1)|V(XuXl)|2+K4/(2m)()(2+|Xl|)mμ(ρ).

    Case 3: Bρ(ξ0){|v/ρ|1}{|XuXl|>1}. It follows

    |vρ|ρ+K2()(1+|Xl|)mμ(ρ)+K2()(|XuXl|)mμ(ρ)C(m,M)(Cp+K2)|V(XuXl)|2+K2()(2+|Xl|)mμ(ρ).

    Case 4: Bρ(ξ0){|v/ρ|>1}{|XuXl|>1}. It leads to

    |vρ|ρ+K2()(1+|Xl|)mμ(ρ)+K2()(|XuXl|)mμ(ρ)C(m,M)(Cp+K2)|V(XuXl)|2+K2()(2+|Xl|)mμ(ρ).

    Combining these estimates above, we obtain:

    VBρ(ξ0)K()(1+|Xu|)m2μ(|v|)dξC(m,M)(Cp+K2())Bρ(ξ0)|V(XuXl)|2dξ+K4/(2m)()(2+|Xl|)mμ(ρ)C(m,M)(Cp+K2())Φ(ξ0,p0,Xl)+K4/(2m)()(2+|Xl|)mμ(ρ). (3.35)

    Substituting (3.28), (3.29)–(3.33), and (3.35) into (3.25), we can immediately conclude that (3.23) holds.

    In this part, we apply linearization tools and A-harmonic approximation techniques to establish improved estimates for the excess functional Φ. For sake of simplicity, motivated by the form of the Caccioppoli-type inequalities, we set the following re-normalized excess functionals:

    Φ(ξ0,ρ,l)=Bρ(ξ0)V(XuXl)2dξ,

    and

    Ψ(ξ0,ρ,l)=Bρ(ξ0)|V(uu0Xl(ξ1ξ10)ρ)|2dξ+Bρ(ξ0)|uu0Xl(ξ1ξ10)ρ|2dξ.

    Lemma 3.4. Let uHW1,m(Ω,RN)L(Ω,RN) satisfy the conditions of Theorem 1.1. Assume that the following smallness conditions are satisfied:

    ω(|(Xu)ξ0,ρ|,Φ12(ξ0,ρ,(Xu)ξ0,ρ))+Φ12(ξ0,ρ,(Xu)ξ0,ρ)δ4, (3.36)
    C2F2(|uξ0,ρ|,|(Xu)ξ0,ρ|)μ(ρ)δ2, (3.37)

    with C2=8C21C2(m,M)C4, together with the condition

    ρρm(2m)(m1)1(1+|uξ0,ρ|,1+|(Xu)ξ0,ρ|). (3.38)

    Then, we have the excess estimate for τ[γ,1):

    Φ(ξ0,θρ,(Xu)ξ0,θρ)θ2τΦ(ξ0,ρ,(Xu)ξ0,ρ)+K(|uξ0,ρ|,|(Xu)ξ0,ρ|)μ2(ρσ), (3.39)

    where σ=min{(2m)(m1)/m,(m1)/2}, and K(s,t)=C7H2/(m1)2(2m)(s,M+t).

    Proof. For simplicity, we use the abbreviation Φ(ρ)=Φ(ξ0,ρ,(Xu)ξ0,ρ) in what follows. For ε>0 (to be determined later), we take δ(0,1) and Υ[0,1] to be the corresponding constant from the A-harmonic approximation lemma and set

    ω=u(uξ0,ρΥhξ0,2θρ)(Xu)ξ0,ρ(ξ1ξ10),Υ=˜CΓ(ρ)with˜C=max{C1,Cc}, (3.40)

    and

    Γ(ρ)=(δ4)2Φ(ρ)+Ψ(ρ)+(δ4)2Φ2m(ρ)+16δ2μ2(ρ)F(|uξ0,ρ|,|(Xu)ξ0,ρ|). (3.41)

    Noting the smallness assumptions in (3.36) and (3.37), we infer that

    ω(|(Xu)ξ0,ρ|,Φ12(ξ0,ρ,(Xu)ξ0,ρ))+Φ12(ξ0,ρ,(Xu)ξ0,ρ)δ4, (3.42)
    |Bρ(ξ0)[Aαi,pjβ(ξ0,uξ0,ρ,(Xu)ξ0,ρ)Xω]Xiφαdξ|Υω(|(Xu)ξ0,ρ|,Φ1/2(ρ))Φ1/2(ρ)+Φ(ρ)+Φ1/2(ρ)+Φ1/m(ρ)+μ(ρ)F(|uξ0,ρ|,|(Xu)ξ0,ρ|)C(m,M)Γ(ρ)supBρ(ξ0)|Xφ|Υ[δ4(ω(|(Xu)ξ0,ρ|,Φ1/2(ρ))+Φ1/2(ρ))+δ4+δ4+δ4]supBρ(ξ0)|Xφ|Υ[ω(|(Xu)ξ0,ρ|,Φ1/2(ρ))+Φ1/2(ρ)+3δ4]supBρ(ξ0)|Xφ|ΥδsupBρ(ξ0)|Xφ|. (3.43)

    Then, from the definition of Υ and the Caccioppoli-type inequality (3.6) with l=lξ0,ρ

    Bρ(ξ0)|V(Xω)|2dξCc(Ψ(ρ)+F)Υ21. (3.44)

    We observe that (3.43) and (3.44) fulfill the conditions of the A-harmonic approximation lemma, which ensures that we find an A-harmonic function hHW1,m(Bρ(ξ0),RN) such that

    Bρ(ξ0)|V(Xh)|2dξ1,Bρ(ξ0)|V(ωΥhρ)|2dξΥ2ε. (3.45)

    With the help of Lemma 2.2,

    Φ(θρ)=Bρ(ξ0)|V(Xu)V((Xu)ξ0,θρ)|2dξC(m,M)Bρ(ξ0)|V(Xu(Xu)ξ0,θρ)|2dξC(m,M)Bρ(ξ0)|V(Xu(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ))|2dξ+C(m,M)|V((Xu)ξ0,θρ(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ))|2. (3.46)

    Next, we proceed to estimate the right-hand side of (3.46), by decomposing Bθρ(ξ0) into a set with

    B1=Bθρ(ξ0){|Xu(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ)|1},

    and

    B2=Bθρ(ξ0){|Xu(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ)|>1}.

    Then, by Lemma 2.2 (1) and Hölder's inequality, we obtain:

    |(Xu)ξ0,θρ(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ)|=|Bθρ(ξ0)|Xu(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ)|dξ|2[Bθρ(ξ0)|V(Xu(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ))|2dξ]12+m2[Bθρ(ξ0)|V(Xu(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ))|2mmdξ]1mm2(E12+E1m), (3.47)

    where we have used the term

    E=:Bθρ(ξ0)|V(Xu(Xu)ξ0,ρΥ(Xh)(ξ0,2θρ))|2dξ. (3.48)

    Since V(ζ) is monotone increasing in ζ, it follows that, from (3.46),

    Φ(θρ)C(E+V2(E1/2+E1/m))C(E+E2/m). (3.49)

    Now it remains for us to estimate E, noting that

    Bρ(ξ0)|Xh|dξ22Bρ(ξ0)|V(Xh)|2dξ22. (3.50)

    Note that the smallness conditions in (3.36) and (3.37) imply that C4Υ21 with C4=max{8C0,(2θ)Q}, where we have assumed 4C21C2(m,M)C41, which is no restriction. By applying the priori estimate for constant coefficients sub-elliptic systems, we have the following:

    Υ|(Xh)(ξ0,2θρ)|ΥsupBρ/2(ξ0)|Xh|ΥC0Bρ(ξ0)|Xh|dξ22ΥC01. (3.51)

    The Caccioppoli-type inequality applied to Bθρ(ξ0) with u0=uξ0,ρ, Xl=(Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ), and θ(0,1/4] yields

    ECc[B2θρ(ξ0)|V(uuξ0,ρ((Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ))(ξ1ξ10)2θρ)|2dξ+B2θρ(ξ0)|uuξ0,ρ((Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ))(ξ1ξ10)2θρ|2dξ+F], (3.52)

    where

    F=[K(|uξ0,ρ|+|(Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ)|)(1+|(Xu)ξ0,ρ+γ(Xh)(ξ0,2θρ)|)]2m/(m1)μ2((2θρ)(2m)(m1)/m)+(1+2M+|(Xu)ξ0,ρ+γ(Xh)(ξ0,2θρ)|)m/(m1)2(2θρ)m1+μ2((2θρ)(2m)(m1)/m)[2a(2+|Xl|)+b]2/(m1)(2m)2θρ. (3.53)

    By Lemma 2.2, one gets

    B2θρ(ξ0)|V(uuξ0,ρ((Xu)ξ0,ρ+Υ(Xh)ξ0,2θρ)(ξ1ξ10)2θρ)|2dξB2θρ(ξ0)|V(u(uξ0,ρΥhξ0,2θρ)(Xu)ξ0,ρ(ξ1ξ10)Υh(ξ)2θρ+Υh(ξ)Υhξ0,2θρΥ(Xh)ξ0,2θρ(ξ1ξ10)2θρ)|2dξC[B2θρ(ξ0)(|V(ωΥh(ξ)2θρ)|2+|V(Υh(ξ)hξ0,2θρ(Xh)ξ0,2θρ(ξ1ξ10)2θρ)|2)dξ]. (3.54)

    To estimate the right-hand side, we employ (3.45) to infer that

    B2θρ(ξ0)|V(ωΥh(ξ)2θρ)|2dξC(2θ)Q2Bρ(ξ0)|V(ωΥh(ξ)ρ)|2dξC(2θ)Q2Υ2ε.

    Using Lemma 2.2 and the Sobolev–Poincaré-type inequality in Lemma 2.3 leads to

    B2θρ(ξ0)|V(Υh(ξ)hξ0,2θρ(Xh)ξ0,2θρ(ξ1ξ10)2θρ)|2dξC2pΥ2B2θρ(ξ0)|V(Xh(ξ)(Xh)(ξ0,2θρ))|2dξC4p(2θρ)2Υ2B2θρ(ξ0)|V(X2h)|2dξC4p(2θρ)2Υ2supBρ/2(ξ0)|X2h|2CC0C4p(2θ)2Υ2Bρ(ξ0)|V(Xh)|2dξC5θ2Υ2, (3.55)

    where we assume that C5=4CC0C4p.

    B2θρ(ξ0)|uuξ0,ρ((Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ))(ξ1ξ10)2θρ|2dξB2θρ(ξ0)|u(uξ0,ρΥhξ0,2θρ)(Xu)ξ0,ρ(ξ1ξ10)Υh(ξ)2θρ+Υh(ξ)Υhξ0,2θρΥ(Xh)ξ0,2θρ(ξ1ξ10)2θρ|2dξC[B2θρ(ξ0)|ωΥh(ξ)2θρ|2+|Υh(ξ)hξ0,2θρ(Xh)ξ0,2θρ(ξ1ξ10)2θρ|2dξ]. (3.56)

    Now, we are in the position to estimate B2θρ(ξ0)|ωΥh(ξ)2θρ|2dξ. Since |V(ωΥhρ)|2 is bounded almost everywhere (3.45), we denote its upper bound by M1. Lemma 2.2 (1) implies that

    |ωΥhρ|2|V(ωΥhρ)|2M1,for|ωΥhρ|1,

    and

    |ωΥhρ|(2|V(ωΥhρ)|)2m(2M1)2m,for|ωΥhρ|>1.

    Hence, we have

    |ωΥhρ|max{2M1,(2M1)2m}=M2. (3.57)

    Furthermore, it leads to

    B2θρ(ξ0)|ωΥh(ξ)2θρ|2dξC(2θ)Q2Bρ(ξ0)|ωΥh(ξ)ρ|2dξC(2θ)Q2M22Bρ(ξ0)|ωΥh(ξ)M2ρ|2dξC2Q1θQ2M22Bρ(ξ0)|V(ωΥh(ξ)M2ρ)|2dξC(2θ)Q2Bρ(ξ0)|V(ωΥh(ξ)ρ)|2dξC(2θ)Q2Υ2ε. (3.58)

    Using Lemmas 2.2–2.4 and (3.45) yields

    B2θρ(ξ0)|Υh(ξ)hξ0,2θρ(Xh)ξ0,2θρ(ξ1ξ10)2θρ|2dξΥ2B2θρ(ξ0)|h(ξ)hξ0,2θρ(Xh)ξ0,2θρ(ξ1ξ10)2θρ|2dξC2pΥ2B2θρ(ξ0)|Xh(ξ)(Xh)(ξ0,2θρ)|2dξC4p(2θρ)2Υ2B2θρ(ξ0)|X2h|2dξCθ2Υ2. (3.59)

    Noting that Υ(Xh)ξ0,2θρ22C0Υ1 and the definition of H(), we obtain:

    [K(|uξ0,ρ|+|(Xu)ξ0,ρ+Υ(Xh)(ξ0,2θρ)|)(1+|(Xu)ξ0,ρ+γ(Xh)(ξ0,2θρ)|)]2m/(m1)μ2((2θρ)(2m)(m1)/m)[K(|uξ0,ρ|+|(Xu)ξ0,ρ+1|)(2+|(Xu)ξ0,ρ)]2m/(m1)μ2(ρ(2m)(m1)/m)Hm/(m1)(1+|uξ0,ρ|,|(Xu)(ξ0,ρ)|)μ2(ρ(2m)(m1)/m), (3.60)

    and

    (1+2M+|(Xu)ξ0,ρ+γ(Xh)(ξ0,2θρ)|)m/(m1)2(2θρ)m1+[2a(2+|Xl|)+b]2/(m1)(2m)2θρ[(2+2M+|(Xu)ξ0,ρ|)m/(m1)2+[2a(2+|Xl|)+b]2/(m1)(2m)]μ2(ρ(m1)/2), (3.61)

    where we have used the fact μ2(ρ(m1)/2)μ2(ρ) and the nondecreasing property of μ.

    Combining all the above estimates with (3.52) and letting ε=θQ+4, we arrive at

    EC6[θ2Υ2+H2/(m1)2(2m)(|uξ0,ρ|,M+|(Xu)ξ0,ρ|)μ2(ρσ)], (3.62)

    where σ=min{(2m)(m1)/m,(m1)/2} and C6 depends only on Q,N,m,M,λ, and Cp. For any given τ(γ,1), choosing θ(0,14) suitably such that C3C6θ2θ2τ, we easily find (note the definition of γ)

    Φ(θρ)θ2τ[Φ(ρ)+C7H2/(m1)2(2m)(|uξ0,ρ|,M+|(Xu)ξ0,ρ|)μ2(ρσ)]:=θ2τ[Φ(ρ)+K(|uξ0,ρ|,|(Xu)ξ0,ρ|)μ2(ρσ)], (3.63)

    where the constant C7 has the same dependencies as C6 and(2m)(m1)/m322<1/2,K(s,t)=C7H2/(m1)2(2m)(s,M+t).

    For T>0, we find Φ0(T)>0 (depending on Q,N,λ,L,τ and ω) such that

    ω12(2T,2Φ120(T))+2Φ120(T))14δ, (3.64)

    and

    16(2C21)2m(1+C2mp)2Φ0(T)θ2Q(1θτ)2T2. (3.65)

    With Φ0(T) from (3.64) and (3.65), we choose ρ0(T)(0,1] (depending on Q,N,λ,L,τ,ω,η and κ) such that

    ρ0(T)ρ(2m)(m1)/m1(1+2T,1+2T), (3.66)
    C2F2(2T,2T)μ2(ρ0(T))δ2, (3.67)
    K0(T)μ(ρ0(T)2)(θσγθ2τ)Φ0(T), (3.68)
    4(2C21)2m(1+C2mp)2K0(T)H(ρ0(T))2θ2Q(1θγ)2(θσγθ2τ)T2, (3.69)

    where K0(T):=K(2T,2T).

    The rest of the process to obtain Theorem 1.1 is very similar to that in [12]. We omit it here.

    Beibei Chen: formal analysis, methodology, writing–original draft; Jialin Wang: formal analysis, methodology, writing–original draft, funding acquisition, supervision, writing–review and editing; Dongni Liao: formal analysis, methodology, funding acquisition, supervision, writing–review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors express their gratitude to the referees for their insightful comments and valuable suggestions. This research is supported by the National Natural Science Foundation of China (No. 12061010), Jiangxi Provincial Natural Science Foundation (No. 20242BAB26003), and the Science and Technology Planning Project of Jiangxi Province (No. GJJ2201204).

    The authors declare no competing interests.



    [1] A. D. Austin, J. T. Tyson, A new proof of the C regularity of C2 conformal mappings on the Heisenberg group, Colloq. Math., 150 (2017), 217–228. http://dx.doi.org/10.4064/cm7193-3-2017 doi: 10.4064/cm7193-3-2017
    [2] E. Acerbi, N. Fusco, Regularity for minimizers of nonquadratic functionals: the case 1<p<2, J. Math. Anal. Appl., 140 (1989), 115–135. http://dx.doi.org/10.1016/0022-247X(89)90098-X doi: 10.1016/0022-247X(89)90098-X
    [3] V. Bögelein, F. Duzaar, N. A. Liao, C. Scheven, Gradient Hölder regularity for degenerate parabolic systems, Nonlinear Anal., 225 (2022), 113119. http://dx.doi.org/10.1016/j.na.2022.113119 doi: 10.1016/j.na.2022.113119
    [4] V. Bögelein, F. Duzaar, P. Marcellini, C. Scheven, Boundary regularity for elliptic systems with p,q-growth, J. Math. Pure. Appl., 159 (2022), 250–293. http://dx.doi.org/10.1016/j.matpur.2021.12.004 doi: 10.1016/j.matpur.2021.12.004
    [5] M. Bramanti, M. C. Zhu, Lp and Schauder estimates for nonvariational operators structured on H¨ormander vector fields with drift, Analysis and PDE., 6 (2013), 1793–1855. http://dx.doi.org/10.2140/apde.2013.6.1793 doi: 10.2140/apde.2013.6.1793
    [6] L. Capogna, Regularity of quasi-linear equations in the Heisenberg group, Commun. Pur. Appl. Math., 50 (1997), 867–889. http://dx.doi.org/10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3 doi: 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
    [7] L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263–295. http://dx.doi.org/10.1007/s002080050261 doi: 10.1007/s002080050261
    [8] L. Capogna, N. Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type, J. Eur. Math. Soc., 5 (2003), 1–40. http://dx.doi.org/10.1007/s100970200043 doi: 10.1007/s100970200043
    [9] G. Citti, S. Mukherjee, Regularity of quasi-linear equations with Hörmander vector fields of step two, Adv. Math., 408 (2022), 108593. http://dx.doi.org/10.1016/j.aim.2022.108593 doi: 10.1016/j.aim.2022.108593
    [10] S. H. Chen, Z. Tan, Optimal partial regularity results for nonlinear elliptic systems in Carnot groups, Discrete Cont. Dyn., 33 (2013), 3391–3405. http://dx.doi.org/10.3934/dcds.2013.33.3391 doi: 10.3934/dcds.2013.33.3391
    [11] F. Duzaar, J. F. Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation, Manuscripta Math., 103 (2000), 267–298. http://dx.doi.org/10.1007/s002290070007 doi: 10.1007/s002290070007
    [12] F. Duzaar, A. Gastel, Nonlinear elliptic systems with Dini continuous coefficients, Arch. Math., 78 (2002), 58–73. http://dx.doi.org/10.1007/s00013-002-8217-1 doi: 10.1007/s00013-002-8217-1
    [13] F. Duzaar, J. F. Grotowski, M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth, Annali di Matematica, 184 (2005), 421–448. http://dx.doi.org/10.1007/s10231-004-0117-5 doi: 10.1007/s10231-004-0117-5
    [14] G. W. Du, J. Q. Han, P. C. Niu, Interior regularity for degenerate equations with drift on homogeneous groups, RACSAM, 113 (2019), 587–604. http://dx.doi.org/10.1007/s13398-018-0500-5 doi: 10.1007/s13398-018-0500-5
    [15] F. Duzaar, G. Mingione, The p-harmonic approximation and the regularity of p-harmonic maps, Calc. Var., 20 (2004), 235–256. http://dx.doi.org/10.1007/s00526-003-0233-x doi: 10.1007/s00526-003-0233-x
    [16] F. Duzaar, G. Mingione, Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 735–766. http://dx.doi.org/10.1016/j.anihpc.2003.09.003 doi: 10.1016/j.anihpc.2003.09.003
    [17] A. Domokos, On the regularity of p-harmonic functions in the Heisenberg group, PhD Thesis, University of Pittsburgh, 2004.
    [18] F. Duzaar, K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math., 546 (2002), 73–138. http://dx.doi.org/10.1515/CRLL.2002.046 doi: 10.1515/CRLL.2002.046
    [19] A. Föglein, Partial regularity results for sub-elliptic systems in the Heisenberg group, Calc. Var., 32 (2008), 25–51. http://dx.doi.org/10.1007/S00526-007-0127-4 doi: 10.1007/S00526-007-0127-4
    [20] X. J. Feng, P. C. Niu, Interior regularity for degenerate elliptic equations with drift on homogeneous groups, J. Lie Theory, 23 (2013), 803–825.
    [21] Y. X. Hou, X. J. Feng, X. W. Cui, Global Hölder estimates for hypoelliptic operators with drift on homogeneous groups, Miskolc Math. Notes, 13 (2012), 337–347. http://dx.doi.org/10.18514/MMN.2012.458 doi: 10.18514/MMN.2012.458
    [22] F. W. Gehring, The Lpintegrability of the partial derivatives of quasiconformal mapping, Acta Math., 130 (1973), 265–277. http://dx.doi.org/10.1007/BF02392268 doi: 10.1007/BF02392268
    [23] M. Giaquinta, G. Modica, Modica, Partial regularity of minimisers of quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 185–208. http://dx.doi.org/10.1016/S0294-1449(16)30385-7 doi: 10.1016/S0294-1449(16)30385-7
    [24] Y. X. Hou, P. C. Niu, Weighted Sobolev-Morrey estimates for hypoelliptic operators with drift on homogeneous groups, J. Math. Anal. Appl., 428 (2015), 1319–1338. http://dx.doi.org/10.1016/j.jmaa.2015.03.080 doi: 10.1016/j.jmaa.2015.03.080
    [25] E. Lanconelli, S. Polidoro, On a class of hypoelliptic evolution operators, Rendiconti del Seminario Matematico, 52 (1994), 29–63.
    [26] E. Lanconelli, A. Pascucci, P. Sergio, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, STAMPA, 2 (2002), 243–265.
    [27] J. J. Manfredi, G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg group, Math. Ann., 339 (2007), 485–544. http://dx.doi.org/10.1007/s00208-007-0121-3 doi: 10.1007/s00208-007-0121-3
    [28] S. Mukherjee, X. Zhong, C1,α-Regularity for variational problems in the Heisenberg group, Anal. PDE, 14 (2021), 567–594. http://dx.doi.org/10.2140/apde.2021.14.567 doi: 10.2140/apde.2021.14.567
    [29] G. Mingione, A. Zatorska-Goldstein, X. Zhong, Gradient regularity for elliptic equations in the Heisenberg group, Adv. Math., 222 (2009), 62–129. http://dx.doi.org/10.1016/j.aim.2009.03.016 doi: 10.1016/j.aim.2009.03.016
    [30] E. Shores, Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications, PhD Thesis, University of Arkansas, 2005.
    [31] L. Simon, Lectures on geometric measure theory, Canberra: Australian National University Press, 1983.
    [32] J. L. Wang, D. N. Liao, Z. F. Yu, Hölder continuity for sub-elliptic systems under the sub-quadratic controllable growth in Carnot groups, Rend. Sem. Mat. Univ. Padova, 130 (2013), 169–202. http://dx.doi.org/10.4171/RSMUP/130-6 doi: 10.4171/RSMUP/130-6
    [33] J. L. Wang, M. C. Zhu, S. J. Gao, D. N. Liao, Regularity for sub-elliptic systems with VMO-coefficients in the Heisenberg group: the sub-quadratic structure case, Adv. Nonlinear Anal., 10 (2021), 420–449. http://dx.doi.org/10.1515/anona-2020-0145 doi: 10.1515/anona-2020-0145
    [34] S. Z. Zheng, Z. S. Feng, Regularity of subelliptic p-harmonic systems with subcritical growth in Carnot group, J. Differ. Equations, 258 (2015), 2471–2494. http://dx.doi.org/10.1016/J.JDE.2014.12.020 doi: 10.1016/J.JDE.2014.12.020
    [35] J. L. Zhang, P. C. Niu, C1,α-Regularity for quasilinear degenerate elliptic equation with a dirft term on the Heisenberg group, B. Sci. Math., 175 (2022), 103097. http://dx.doi.org/10.1016/j.bulsci.2022.103097 doi: 10.1016/j.bulsci.2022.103097
    [36] J. L. Zhang, J. L. Wang, Regularity for a nonlinear discontinuous subelliptic system with drift on the Heisenberg group, Adv. Math. Phys., 2022 (2022), 7853139. http://dx.doi.org/10.1155/2022/7853139 doi: 10.1155/2022/7853139
    [37] J. L. Zhang, J. L. Wang, Partial regularity for a nonlinear discontinuous sub-elliptic system with drift on the Heisenberg group: the superquadratic case, Complex Var. Elliptic, 69 (2024), 547–572. http://dx.doi.org/10.1080/17476933.2022.2152444 doi: 10.1080/17476933.2022.2152444
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(377) PDF downloads(31) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog