Citation: Liu Yang, Lijun Yin, Zuicha Deng. Drift coefficient inversion problem of Kolmogorov-type equation[J]. AIMS Mathematics, 2021, 6(4): 3432-3454. doi: 10.3934/math.2021205
[1] | R. A. Adams, Sobolev spaces, Academic Press, New York, 1975. |
[2] | I. Bushuyev, Global uniqueness for inverse problems with final observation, Inverse Probl., 11 (1995), L11–L16. doi: 10.1088/0266-5611/11/4/001 |
[3] | J. R. Cannon, Y. Lin, S. Xu, Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations, Inverse Probl., 10 (1994), 227–243. doi: 10.1088/0266-5611/10/2/004 |
[4] | J. R. Cannon, Y. Lin, An inverse problem of finding a parameter in a semilinear heat equation, J. Math. Anal. Appl., 145 (1990), 470–484. doi: 10.1016/0022-247X(90)90414-B |
[5] | Q. Chen, J. J. Liu, Solving an inverse parabolic problem by optimization from final measurement data, J. Comput. Appl. Math., 193 (2006), 183–203. doi: 10.1016/j.cam.2005.06.003 |
[6] | M. Choulli, M. Yamamoto, Generic well-posedness of an inverse parabolic problem - the Hölder space approach, Inverse Probl., 12 (1996), 195–205. doi: 10.1088/0266-5611/12/3/002 |
[7] | M. Dehghan, Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numer. Meth. Part. Diff. Equ., 21 (2005), 611–622. doi: 10.1002/num.20055 |
[8] | M. Dehghan, Determination of a control function in three-dimensional parabolic equations, Math. Comput. Simul., 61 (2003), 89–100. doi: 10.1016/S0378-4754(01)00434-7 |
[9] | Z. C. Deng, L. Yang, J. N. Yu, G. W. Luo, Identifying the radiative coefficient of an evolutional type heat conduction equation by optimization method, J. Math. Anal. Appl., 362 (2010), 210–223. doi: 10.1016/j.jmaa.2009.08.042 |
[10] | Z. C. Deng, J. N. Yu, L. Yang, Optimization method for an evolutional type inverse heat conduction problem, J. Phys. A: Math. Theor., 41 (2008), 035201. doi: 10.1088/1751-8113/41/3/035201 |
[11] | Z. C. Deng, J. N. Yu, L. Yang, Identifying the coefficient of first-order in parabolic equation from final measurement data, Math. Comput. Simul., 77 (2008), 421–435. |
[12] | H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Dordrecht: Kluwer Academic Publishers, 1996. |
[13] | L. C. Evans, Partial Differential Equations, American Math Society, 1998. |
[14] | A. Friedman, Partial Differential Equations of Parabolic Type, Englewood Cliffs, NJ: Prentice-Hall, 1964. |
[15] | G. L. Gong, Stochastic differential equation and its application, Tsinghua University Press, Beijing, 2008. |
[16] | V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998. |
[17] | V. Isakov, Inverse parabolic problems with the final overdetermination, Comm. Pure Appl. Math., 44 (1991), 185–209. doi: 10.1002/cpa.3160440203 |
[18] | L. S. Jiang, Y. S. Tao, Identifying the volatility of underlying assets from option prices, Inverse Probl., 17 (2001), 137–155. doi: 10.1088/0266-5611/17/1/311 |
[19] | L. S. Jiang, Q. H. Chen, L. J. Wang, J. E. Zhang, A new well-posed algorithm to recover implied local volatility, Quant. Finance, 3 (2003), 451–457. doi: 10.1088/1469-7688/3/6/304 |
[20] | L. S. Jiang, B. J. Bian, Identifying the principal coefficient of parabolic equations with non-divergent form, J. Phys.: Conf. Ser., 12 (2005), 58–65. doi: 10.1088/1742-6596/12/1/006 |
[21] | L. S. Jiang, C. L. Xu, X. M. Ren, S. H. Li, Mathematical model and case analysis of financial derivatives pricing, Higher Education Press, Beijing, 2008. |
[22] | B. Kaltenbacher, M. V. Klibanov, An inverse problem for a nonlinear parabolic equation with applications in population dynamics and magnetics, SIAM J. Math. Anal., 39 (2008), 1863–1889. doi: 10.1137/070685907 |
[23] | Y. L. Keung, J. Zou, Numerical identifications of parameters in parabolic systems, Inverse Probl., 14 (1998), 83–100. doi: 10.1088/0266-5611/14/1/009 |
[24] | A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problem, Springer, New York, 1999. |
[25] | O. Ladyzenskaya, V. Solonnikov, N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, Providence, KI: American Mathematical Society, 1968. |
[26] | W. Rundell, The determination of a parabolic equation from initial and final data, Proc. Am. Math. Soc., 99 (1987), 637–642. doi: 10.1090/S0002-9939-1987-0877031-4 |
[27] | A. A. Samarskii, P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, Berlin, Germany, 2007. |
[28] | A. Tikhonov, V. Arsenin, Solutions of Ill-posed Problems, Geology Press, Beijing, 1979. |
[29] | D. Trucu, D. B. Ingham, D. Lesnic, Inverse temperature-dependent perfusion coefficient reconstruction, Int. J. Non-Linear Mech., 45 (2010), 542–549. doi: 10.1016/j.ijnonlinmec.2010.02.004 |
[30] | D. Trucu, D. B. Ingham, D. Lesnic, Reconstruction of the space- and time-dependent blood perfusion coefficient in bio-heat transfer, Heat Transfer Eng., 32 (2011), 800–810. doi: 10.1080/01457632.2011.525430 |
[31] | D. Trucu, D. B. Ingham, D. Lesnic, Space-dependent perfusion coefficient identification in the transient bio-heat equation, J. Eng. Math., 67 (2010), 307–315. doi: 10.1007/s10665-009-9319-6 |
[32] | Z. Q. Wu, J. X. Yin, C. P. Wang, Introduction to elliptic and parabolic equations, Science Press, Beijing, 2003. |
[33] | M. Yamamoto, J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Probl., 17 (2001), 1181–1202. doi: 10.1088/0266-5611/17/4/340 |
[34] | L. Yang, J. N. Yu, Z. C. Deng, An inverse problem of identifying the coefficient of parabolic equation, Appl. Math. Modell., 32 (2008), 1984–1995. doi: 10.1016/j.apm.2007.06.025 |