Inequalities are essential in solving mathematical problems in many different areas of mathematics. Among these, problems involving coefficient combinations that occurred in the Taylor–Maclaurin series of the inverse of complex-valued analytic functions are the challenging ones to solve. In the current article, our aim is to study certain coefficient-related problems that construct from coefficients of the inverse of specific analytic functions. These problems include the Zalcman and Fekete–Szegö inequalities, as well as sharp estimates of the second and third-order Hankel determinants with inverse function coefficients. Also, one of the obtained results gives an improvement of the problem that has been recently published in the journal "AIMS Mathematics".
Citation: Huo Tang, Muhammad Abbas, Reem K. Alhefthi, Muhammad Arif. Problems involving combinations of coefficients for the inverse of some complex-valued analytical functions[J]. AIMS Mathematics, 2024, 9(10): 28931-28954. doi: 10.3934/math.20241404
Inequalities are essential in solving mathematical problems in many different areas of mathematics. Among these, problems involving coefficient combinations that occurred in the Taylor–Maclaurin series of the inverse of complex-valued analytic functions are the challenging ones to solve. In the current article, our aim is to study certain coefficient-related problems that construct from coefficients of the inverse of specific analytic functions. These problems include the Zalcman and Fekete–Szegö inequalities, as well as sharp estimates of the second and third-order Hankel determinants with inverse function coefficients. Also, one of the obtained results gives an improvement of the problem that has been recently published in the journal "AIMS Mathematics".
[1] | L. Bieberbach, Über dié koeffizienten derjenigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss., 38 (1916), 940–955. |
[2] | K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., 89 (1923), 103–121. https://doi.org/10.1007/BF01448091 doi: 10.1007/BF01448091 |
[3] | P. R. Garabedian, M. Schiffer, A proof of the Bieberbach conjecture for the fourth coefficient, Journal of Rational Mechanics and Analysis, 4 (1955), 427–465. |
[4] | R. Pederson, M. Schiffer, A proof of the Bieberbach conjecture for the fifth coefficient, Arch. Rational Mech. Anal., 45 (1972), 161–193. https://doi.org/10.1007/BF00281531 doi: 10.1007/BF00281531 |
[5] | R. N. Pederson, A proof of the Bieberbach conjecture for the sixth coefficient, Arch. Rational Mech. Anal., 31 (1968), 331–351. https://doi.org/10.1007/BF00251415 doi: 10.1007/BF00251415 |
[6] | L. Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152. https://doi.org/10.1007/BF02392821 doi: 10.1007/BF02392821 |
[7] | J. E. Brown, A. Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z., 191 (1986), 467–474. https://doi.org/10.1007/BF01162720 doi: 10.1007/BF01162720 |
[8] | L. Li, S. Ponnusamy, J. Qiao, Generalized Zalcman conjecture for convex functions of order $\alpha$, Acta Math. Hungar., 150 (2016), 234–246. https://doi.org/10.1007/s10474-016-0639-5 doi: 10.1007/s10474-016-0639-5 |
[9] | W. C. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104 (1988), 741–744. https://doi.org/10.1090/S0002-9939-1988-0964850-X doi: 10.1090/S0002-9939-1988-0964850-X |
[10] | S. L. Krushkal, Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., 17 (2010), 663–681. https://doi.org/10.1515/gmj.2010.043 doi: 10.1515/gmj.2010.043 |
[11] | S. L. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv: 1408.1948. |
[12] | W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234 (1999), 328–339. |
[13] | R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. https://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8 |
[14] | P. Goel, S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43 (2020), 957–991. https://doi.org/10.1007/s40840-019-00784-y doi: 10.1007/s40840-019-00784-y |
[15] | R. K. Raina, P. Sharma, J. Sokół, Certain classes of analytic functions related to the crescent-shaped regions, J. Contemp. Math. Anal., 53 (2018), 355–362. https://doi.org/10.3103/S1068362318060067 doi: 10.3103/S1068362318060067 |
[16] | L. A. Wani, A. Swaminathan, Radius problems for functions associated with a nephroid domain, RACSAM, 114, (2020), 178. https://doi.org/10.1007/s13398-020-00913-4 |
[17] | S. Gandhi, P. Gupta, S. Nagpal, V. Ravichandran, Starlike functions associated with an Epicycloid, Hacet. J. Math. Stat., 51 (2022), 1637–1660. https://doi.org/10.15672/hujms.1019973 doi: 10.15672/hujms.1019973 |
[18] | B. Gul, M. Arif, R. K. Alhefthi, D. Breaz, L. I. Cotȋrlă, E. Rapeanu, On the study of starlike functions associated with the generalized sine hyperbolic function, Mathematics, 11 (2023), 4848. https://doi.org/10.3390/math11234848 doi: 10.3390/math11234848 |
[19] | L. Shi, M. Arif, M. Abbas, M. Ihsan, Sharp bounds of Hankel determinant for the inverse functions on a subclass of bounded turning functions, Mediterr. J. Math., 20 (2023), 156. https://doi.org/10.1007/s00009-023-02371-9 doi: 10.1007/s00009-023-02371-9 |
[20] | R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$, Proc. Amer. Math. Soc., 87 (1983), 251–257. https://doi.org/10.1090/S0002-9939-1983-0681830-8 doi: 10.1090/S0002-9939-1983-0681830-8 |
[21] | L. Shi, H. M. Srivastava, A. Rafiq, M. Arif, M. Ihsan, Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function, Mathematics, 10 (2022), 3429. https://doi.org/10.3390/math10193429 doi: 10.3390/math10193429 |
[22] | M. Raza, A. Riaz, D. K. Thomas, The third Hankel determinant for inverse coefficients of convex functions, Bull. Aust. Math. Soc., 109 (2024), 94–100. https://doi.org/10.1017/S0004972723000357 doi: 10.1017/S0004972723000357 |
[23] | L. Shi, M. Arif, H. M. Srivastava, M. Ihsan, Sharp bounds on the Hankel determinant of the inverse functions for certain analytic functions, J. Math. Inequal., 17 (2023), 1129–1143. https://doi.org/10.7153/jmi-2023-17-73 doi: 10.7153/jmi-2023-17-73 |
[24] | C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., s1-41 (1966), 111–122. https://doi.org/10.1112/jlms/s1-41.1.111 doi: 10.1112/jlms/s1-41.1.111 |
[25] | C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112. https://doi.org/10.1112/S002557930000807X doi: 10.1112/S002557930000807X |
[26] | W. K. Hayman, On second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., s3-18 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77 doi: 10.1112/plms/s3-18.1.77 |
[27] | M. Obradović, N. Tuneski, Hankel determinants of second and third-order for the class $\mathcal{S}$ of univalent functions, Math. Slovaca, 71 (2021), 649–654. https://doi.org/10.1515/ms-2021-0010 doi: 10.1515/ms-2021-0010 |
[28] | A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1 (2007), 619–625. |
[29] | S. K. Lee, V. Ravichandran, S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013 (2013), 281. https://doi.org/10.1186/1029-242X-2013-281 doi: 10.1186/1029-242X-2013-281 |
[30] | A. Ebadian, T. Bulboaca, N. E. Cho, E. A. Adegani, Coefficient bounds and differential subordinations for analytic functions associated with starlike functions, RACSAM, 114 (2020), 128. https://doi.org/10.1007/s13398-020-00871-x doi: 10.1007/s13398-020-00871-x |
[31] | N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., 11 (2017), 429–439. https://doi.org/10.7153/jmi-11-36 doi: 10.7153/jmi-11-36 |
[32] | B. Kowalczyk, A. Lecko, Y. J. Sim, The sharp bound of the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 97 (2018), 435–445. https://doi.org/10.1017/S0004972717001125 doi: 10.1017/S0004972717001125 |
[33] | B. Kowalczyk, A. Lecko, D. K. Thomas, The sharp bound of the third Hankel determinant for starlike functions, Forum Math., 34 (2022), 1249–1254. https://doi.org/10.1515/forum-2021-0308 doi: 10.1515/forum-2021-0308 |
[34] | B. Kowalczyk, A. Lecko, The sharp bound of the third Hankel determinant for functions of bounded turning, Bol. Soc. Mat. Mex., 27 (2021), 69. https://doi.org/10.1007/s40590-021-00383-7 doi: 10.1007/s40590-021-00383-7 |
[35] | A. Lecko, Y. J. Sim, B. Śmiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory, 13 (2019), 2231–2238. https://doi.org/10.1007/s11785-018-0819-0 doi: 10.1007/s11785-018-0819-0 |
[36] | A. Riaz, M. Raza, The third Hankel determinant for starlike and convex functions associated with lune, Bull. Sci. Math., 187 (2023), 103289. https://doi.org/10.1016/j.bulsci.2023.103289 doi: 10.1016/j.bulsci.2023.103289 |
[37] | B. Kowalczyk, A. Lecko, D. K. Thomas, The sharp bound of the third Hankel determinant of convex functions of order -1/2, J. Math. Inequal., 17 (2023), 191–204. https://doi.org/10.7153/jmi-2023-17-14 doi: 10.7153/jmi-2023-17-14 |
[38] | S. Banga, S. S. Kumar, The sharp bounds of the second and third Hankel determinants for the class $\mathcal{SL}$, Math. Slovaca, 70 (2020), 849–862. https://doi.org/10.1515/ms-2017-0398 doi: 10.1515/ms-2017-0398 |
[39] | M. I. Faisal, I. Al-Shbeil, M. Abbas, M. Arif, R. K. Alhefthi, Problems concerning coefficients of symmetric starlike functions connected with the sigmoid function, Symmetry, 15 (2023), 1292. https://doi.org/10.3390/sym15071292 doi: 10.3390/sym15071292 |
[40] | H. Tang, M. Arif, M. Abbas, F. M. O. Tawfiq, S. N. Malik, Analysis of coefficient-related problems for starlike functions with symmetric points connected with a three-leaf-shaped domain, Symmetry, 15 (2023), 1837. https://doi.org/10.3390/sym15101837 doi: 10.3390/sym15101837 |
[41] | W. Hu, J. Deng, Hankel determinants, Fekete-Szegö inequality, and estimates of initial coefficients for certain subclasses of analytic functions, AIMS Math., 9 (2024), 6445–6467. https://doi.org/10.3934/math.2024314 doi: 10.3934/math.2024314 |
[42] | D. V. Prokhorov, J. Szynal, Inverse coefficients for ($\alpha, \beta $)-convex functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 35 (1981), 125–143. |
[43] | P. Zaprawa, M. Obradović, N. Tuneski, Third Hankel determinant for univalent starlike functions, RACSAM, 115 (2021), 49. https://doi.org/10.1007/s13398-020-00977-2 doi: 10.1007/s13398-020-00977-2 |
[44] | F. Carlson, Sur les coefficients d'une fonction bornée dans le cercle unité, Arkiv för Matematik, Astronomi och Fysik, 27A (1940), 8. |
[45] | P. Zaprawa, Initial logarithmic coefficients for functions starlike with respect to symmetric points, Bol. Soc. Mat. Mex., 27 (2021), 62. https://doi.org/10.1007/s40590-021-00370-y doi: 10.1007/s40590-021-00370-y |
[46] | M. Arif, L. Rani, M. Raza, P. Zaprawa, Fourth Hankel determinant for the family of functions with bounded turning, Bull. Korean Math. Soci., 55 (2018), 1703–1711. https://doi.org/10.4134/BKMS.b170994 doi: 10.4134/BKMS.b170994 |
[47] | H. M. Srivastava, M. Arif, M. Raza, Convolution properties of meromorphically harmonic functions defined by a generalized convolution $q$ -derivative operator, AIMS Math., 6 (2021), 5869–5885. https://doi.org/10.3934/math.2021347 doi: 10.3934/math.2021347 |
[48] | Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7 (2019), 1178. https://doi.org/10.3390/math7121178 doi: 10.3390/math7121178 |