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Abstract: Inequalities are essential in solving mathematical problems in many different areas of
mathematics. Among these, problems involving coefficient combinations that occurred in the Taylor–
Maclaurin series of the inverse of complex-valued analytic functions are the challenging ones to
solve. In the current article, our aim is to study certain coefficient-related problems that construct
from coefficients of the inverse of specific analytic functions. These problems include the Zalcman
and Fekete–Szegö inequalities, as well as sharp estimates of the second and third-order Hankel
determinants with inverse function coefficients. Also, one of the obtained results gives an improvement
of the problem that has been recently published in the journal “AIMS Mathematics”.
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1. Introduction

This research focuses on the comprehensive connection among analytic functions and their inverses,
which provides new ideas for investigating coefficient estimates and inequalities. The outcome of the
present study is particularly relevant in the framework of geometric function theory (GFT), where
particular geometric properties are established for analytic functions employing methods specific to this
domain of research, but also could offer applications in other related fields such as partial differential
equation theory, engineering, fluid dynamics, and electronics. Tremendous impact in the development
of GFT was given by the Bieberbach’s conjecture, an essential problem related to coefficient estimates
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for functions that lie within the family S of univalent functions. This conjecture suggests that for
f ∈ S, expressed through the Taylor–Maclaurin series expansion:

f (υ) = υ +
∞∑

k=2

dkυ
k, υ ∈ D, (1.1)

where D := {υ ∈ C : |υ| < 1} , the coefficients inequality |dk| ≤ k holds for all k ≥ 2. The family
of such analytic functions with the series representation provided in (1.1) is represented by A. It is
worth mentioning that Koebe first introduced S as a subclass of A in 1907. Bieberbach [1] originally
proposed this conjecture in 1916, initially verifying it for the case k = 2. Subsequent advancements
by researchers including Löwner [2], Garabedian and Schiffer [3], Pederson and Schiffer [4], and
Pederson [5] offered partial proofs for cases up to k = 6. However, the complete proof for k ≥ 7
remained unsolved until 1985, when de-Branges [6] utilized hypergeometric functions to establish it
for k ≥ 2.

In 1960, Lawrence Zalcman postulated the functional
∣∣∣d2

k − d2k−1

∣∣∣ ≤ (k − 1)2 with k ≥ 2 for f ∈ S
in order to establish the Bieberbach hypothesis. This has led to the publication of several papers [7–9]
on the Zalcman hypothesis and its generalized form

∣∣∣λd2
k − d2k−1

∣∣∣ ≤ λk2 − 2k + 1 with λ ≥ 0 for various
subfamilies of the family S. This hypothesis remained unproven for a long time until Krushkal’s
breakthrough in 1999, when he proved it in [10] for k ≤ 6 and solved it by utilizing the holomorphic
homotopy of univalent functions in an unpublished manuscript [11] for k ≥ 2. It was also demonstrated
that

∣∣∣dl
k − dl(k−1)

2

∣∣∣ ≤ 2l(k−1) − kl with k, l ≥ 2 for f ∈ S. The Bieberbach conjecture landscape is further
enhanced by other conjectures, such as the one presented by Ma [12] in 1999, which is∣∣∣d jdk − d j+k−1

∣∣∣ ≤ ( j − 1) (k − 1) , j, k ≥ 2.

He restricted his proof to a subclass of S. The challenge for class S remains available.
Now, let us recall the concept of subordination, which essentially describes a relationship between

analytic functions. An analytic function g1 is subordinate to g2 if there exists a Schwarz function ω
such that g1(υ) = g2 (ω(υ)) and it is mathematically represented as g1 ≺ g2. If g2 is univalent in D, then

g1 (υ) ≺ g2 (υ) , (υ ∈ D) ,

if and only if
g1(0) = g2(0) & g1(D) ⊑ g2(D).

In essence, this relationship helps us understand how one function is “contained” within another,
providing insights into their behavior within the complex plane. The family of univalent functions
comprises three classic subclasses C, S∗, and K , each distinguished by its unique properties. These
subclasses are commonly known as convex functions, starlike functions, and close-to-convex functions,
respectively. Let us define each class:

C :=
{

f ∈ S :
(υ f ′ (υ))′

f ′ (υ)
≺

1 + υ
1 − υ

, υ ∈ D

}
,

S∗ :=
{

f ∈ S :
υ f ′ (υ)

f (υ)
≺

1 + υ
1 − υ

, υ ∈ D

}
AIMS Mathematics Volume 9, Issue 10, 28931–28954.
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and

K :=
{

f ∈ S :
υ f ′ (υ)
h (υ)

≺
1 + υ
1 − υ

, υ ∈ D

}
,

for some h ∈ S∗. The above family K may be reduced to the family of bounded turning functions
BT by choosing h (υ) = υ.Moreover, a number of intriguing subfamilies of class S were examined by
replacing 1+υ

1−υ by other special functions. For the reader’s benefit, a few of them are included below:

(i). S∗e ≡ S
∗ (ez) and Ce ≡ C (ez) [13], S∗S G ≡ S

∗
(

2
1+e−z

)
and CS G ≡ C

(
2

1+e−z

)
[14],

(ii). S∗cr ≡ S
∗
(
z +
√

1 + z2
)

and Ccr ≡ C
(
z +
√

1 + z2
)

[15], S∗Ne ≡ S
∗
(
1 + z − 1

3z3
)

[16],
(iii). S∗(n−1)L ≡ S

∗(Ψn−1 (z)) [17] with Ψn−1 (z) = 1 + n
n+1z + 1

n+1zn for n ≥ 2.
(iv). S∗sinh ≡ S

∗ (1 + sinh(λz)) with 0 ≤ λ ≤ ln
(
1 +
√

2
)

[18].

It is observed that a significant area of mathematics is the study of the inverse functions for the
functions in various subclasses of S. The well-known Koebe’s 1/4 theorem states that there exists the
inverse f −1 for every univalent function f defined in D, at least on the disk with a radius of 1/4, which
has Taylor’s series form

f −1 (ω) := ω +
∞∑

n=2

Bnω
n, |ω| < 1/4. (1.2)

Employing the formula f
(

f −1 (ω)
)
= ω, we acquire

B2 = −d2, (1.3)
B3 = 2d2

2 − d3, (1.4)
B4 = 5d2d3 − 5d3

2 − d4, (1.5)
B5 = 14d4

2 + 3d2
3 − 21d2

2d3 + 6d2d4 − d5. (1.6)

We consider the Hankel determinant of f −1 given by

Ĥλ,n
(

f −1
)
=

∣∣∣∣∣∣∣∣∣∣∣∣
Bn Bn+1 . . . Bn+λ−1

Bn+1 Bn+2 . . . Bn+λ
...

... . . .
...

Bn+λ−1 Bn+λ . . . Bn+2λ−2

∣∣∣∣∣∣∣∣∣∣∣∣ .
Specifically, the second and third-order Hankel determinants of f −1 are defined as the following
determinants, respectively:

Ĥ2,2

(
f −1

)
=

∣∣∣∣∣∣ B2 B3

B3 B4

∣∣∣∣∣∣ = B2B4 − B2
3,

Ĥ3,1

(
f −1

)
=

∣∣∣∣∣∣∣∣∣
1 B2 B3

B2 B3 B4

B3 B4 B5

∣∣∣∣∣∣∣∣∣ = B3

(
B2B4 − B2

3

)
− B4 (B4 − B2B3) + B5

(
B3 − B2

2

)
.

As it is seen, f −1 is also not necessary to be univalent. Thus, this concept is also a natural generalization
of the Hankel determinant with coefficients of f ∈ S as entries. There are very few publications in the
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literature that address coefficient-related problems of the inverse function, particularly determinants as
stated above. Due to such a reason, the researchers motivated, and so this led to the publication of
some good articles [19–23] on the above-stated Hankel determinants.

The key mathematical concept in this study is the Hankel determinant Ĥλ,n ( f ), where n, λ ∈
{1, 2, . . .}. This concept was introduced by Pommerenke [24, 25]. It is composed of the coefficients
of the function f ∈ S and is expressed as

Ĥλ,n ( f ) :=

∣∣∣∣∣∣∣∣∣∣∣∣
dn dn+1 . . . dn+λ−1

dn+1 dn+2 . . . dn+λ
...

... . . .
...

dn+λ−1 dn+λ . . . dn+2λ−2

∣∣∣∣∣∣∣∣∣∣∣∣ .
This determinant is utilized in both pure mathematics and applied sciences, including non-stationary
signal theory in the Hamburger moment problem, Markov process theory, and a variety of other fields.
There are relatively few publications on the estimates of the Hankel determinant for functions in the
general classS. Hayman established the best estimate for f ∈ S in [26] by asserting that

∣∣∣Ĥ2,n ( f )
∣∣∣ ≤ |η|,

where η is a constant. Moreover, it was demonstrated in [27] that
∣∣∣Ĥ2,2 ( f )

∣∣∣ ≤ η where 0 ≤ η ≤ 11/3 for
f ∈ S. The two determinants Ĥ2,1 ( f ) and Ĥ2,2 ( f ) for different subfamilies of univalent functions
have been thoroughly examined in the literature. Notable work was done by Janteng et al. [28],
Lee et al. [29], Ebadian et al. [30], and Cho et al. [31], who determine the sharp estimates of the
second-order Hankel determinant for certain subclasses of S.

The sharp estimate of the third-order Hankel determinant Ĥ3,1 ( f ) for some analytic univalent
functions is mathematically more difficult to find than the second-order Hankel determinant. Numerous
articles on the third-order Hankel determinant have been published in the literature in which nonsharp
limits of this determinant for the fundamental subclasses of analytic functions are determined.
Following these arduous investigations, a few scholars were eventually able to obtain sharp bounds
of this determinant for the classes C, BT , and S∗, as reported in the recently published works [32–34],
respectively. These estimates are given by

∣∣∣Ĥ3,1 ( f )
∣∣∣ ≤


4

135 for f ∈ C,
1
4 for f ∈ BT ,
4
9 for f ∈ S∗.

Later on, Lecko et al. [35] established the sharp estimate for
∣∣∣Ĥ3,1 ( f )

∣∣∣ by utilizing similar approaches,
specifically for functions that belong to the S∗ (1/2) class. Also, the articles [36–38] provide more
investigations on the exact bounds of this third-order Hankel determinant.

Now, let us consider the three function classes defined respectively by

S∗Sg :=
{

f ∈ S :
2υ f ′ (υ)

f (υ) − f (−υ)
≺

2
1 + e−υ

, υ ∈ D

}
,

S∗3l,s :=
{

f ∈ S :
2υ f ′ (υ)

f (υ) − f (−υ)
≺ 1 +

4
5
υ +

1
5
υ4, υ ∈ D

}
AIMS Mathematics Volume 9, Issue 10, 28931–28954.
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and

SK exp :=
{

f ∈ S :
2 (υ f ′ (υ))′

( f (υ) − f (−υ))′
≺ eυ, υ ∈ D

}
.

These classes have been studied by Faisal et al. [39], Tang et al. [40], and Mendiratta et al. [13]
respectively. In this paper, we improved the bound of the third-order Hankel determinant

∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣,
which was determined by Hu and Deng [41] and published recently in AIMS Mathematics.
Furthermore, we obtain the bounds of the initial three inverse coefficients together with the sharp
bounds of Krushkal, Zalcman, and Fekete–Szegö functionals along with the Hankel determinants∣∣∣∣Ĥ2,2

(
f −1

)∣∣∣∣ and
∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ upper bounds.

2. A set of lemmas

Let B0 be the class of Schwarz functions. It is noted that ω ∈ B0 can be written as

ω (υ) =
∞∑

n=1

σnυ
n, υ ∈ D. (2.1)

We require the following lemmas to prove our main results.
Lemma 2.1. [42] Let ω (υ) be a Schwarz function. Then, for any real numbers ϱ and ς such that

(ϱ, ς) =
{
|ϱ| ≤

1
2
, − 1 ≤ ς ≤ 1

}
∪

{
1
2
≤ |ϱ| ≤ 2,

4
27

(|ϱ| + 1)3
− (|ϱ| + 1) ≤ ς ≤ 1

}
,

(ϱ, ς) =
{

2 ≤ |ϱ| ≤ 4,
2 (|ϱ| + 1) |ϱ|

4 + |ϱ|2 + 2 |ϱ|
≤ ς ≤

1
12

(
ϱ2 + 8

)}
,

(ϱ, ς) =
{

1
2
≤ |ϱ| ≤ 2, −

2
3

(1 + |ϱ|) ≤ ς ≤
4

27
(1 + |ϱ|)3

− (1 + |ϱ|)
}
,

the following sharp estimate holds: ∣∣∣σ3 + ϱσ1σ2 + ςσ
3
1

∣∣∣ ≤ 1.

Lemma 2.2. [43] If ω (υ) be a Schwarz function, then

|σn| ≤ 1, n ≥ 1. (2.2)

Moreover, for τ ∈ C, the following inequality holds∣∣∣σ2 + τσ
2
1

∣∣∣ ≤ max {1, |τ|} . (2.3)

Lemma 2.3. [44] Let ω (υ) be a Schwarz function. Then

|σ2| ≤ 1 − |σ1|
2 , (2.4)

|σ3| ≤ 1 − |σ1|
2
−
|σ2|

2

1 + |σ1|
, (2.5)

|σ4| ≤ 1 − |σ1|
2
− |σ2|

2 . (2.6)

Lemma 2.4. [45] Let ω (υ) be a Schwarz function. Then∣∣∣σ1σ3 − σ
2
2

∣∣∣ ≤ 1 − |σ1|
2

and ∣∣∣σ4 + (1 + Λ)σ1σ3 + σ
2
2 + (1 + 2Λ)σ2

1σ2 + Λσ
4
1

∣∣∣ ≤ max {1, |Λ|} , Λ ∈ C. (2.7)
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3. Third-order Hantel determinant

In this section, we will improve the bound of the third-order Hankel determinant
∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ with
inverse coefficient entries for functions belonging to the class S∗

Sg
.

Theorem 3.1. Let f −1 be the inverse of the function f ∈ S∗
Sg

and has the form (1.2). Then∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ < 0.0317.

Proof. Let f ∈ S∗
Sg
. Then, by subordination relationship, it implies

2υ f ′ (υ)
f (υ) − f (−υ)

=
2

1 + e−ω(υ) , υ ∈ D (3.1)

and also assumes that
ω (υ) = σ1υ + σ2υ

2 + σ3υ
3 + σ4υ

4 + · · · . (3.2)

Using (1.1), we obtain

2υ f ′ (υ)
f (υ) − f (−υ)

:= 1 + 2d2υ + 2d3υ
2 + (−2d2d3 + 4d4) υ3 +

(
−2d2

3 + 4d5

)
υ4 + · · · . (3.3)

By some easy calculation and utilizing the series expansion of (3.2), we achieve

2
1 + e−ω(υ) = 1 +

1
2
σ1υ +

1
2
σ2υ

2 +

(
−

1
24
σ3

1 +
1
2
σ3

)
υ3 +

(
−

1
8
σ2

1σ2 +
1
2
σ4

)
υ4 + · · · . (3.4)

Now by comparing (3.3) and (3.4), we obtain

d2 =
1
4
σ1, (3.5)

d3 =
1
4
σ2, (3.6)

d4 = −
1

96
σ3

1 +
1
8
σ3 +

1
32
σ1σ2, (3.7)

d5 =
1
8
σ4 +

1
32
σ2

2 −
1

32
σ2

1σ2. (3.8)

Putting (3.5)–(3.8) in (1.3)–(1.6), we obtain

B2 = −
1
4
σ1, (3.9)

B3 = −
1
4
σ2 +

1
8
σ2

1, (3.10)

B4 = −
13

192
σ3

1 −
1
8
σ3 +

9
32
σ1σ2, (3.11)

B5 =
5

32
σ2

2 −
1
4
σ2

1σ2 +
5

128
σ4

1 −
1
8
σ4 +

3
16
σ1σ3. (3.12)
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The determinant
∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ can be reconfigured as follows:∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ = ∣∣∣2B2B3B4 − B2
4 − B2

2B5 − B3
3 + B3B5

∣∣∣ .
From (3.9)–(3.12), we easily write∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ = 1
64

∣∣∣∣∣∣−σ2
3 +

(
1
2
σ2 +

1
6
σ2

1

)
σ1σ3 +

5
576
σ6

1 −
3
2
σ3

2 + 2σ2σ4

−
5

48
σ4

1σ2 +
5

16
σ2

1σ
2
2 −

1
2
σ2

1σ4

∣∣∣∣∣ .
Now we begin by utilizing Lemma 2.1 with ϱ = −1

2 and ς = −1
6 that∣∣∣∣∣∣σ3

[
σ3 +

(
−

1
2

)
σ1σ2 +

(
−

1
6

)
σ3

1

]∣∣∣∣∣∣ ≤ |σ3|

and also by using Lemma 2.3, we have

|σ3| ≤ 1 −
|σ2|

2

1 + |σ1|
− |σ1|

2
≤ 1 −

|σ2|
2

2
− |σ1|

2 .

Applying it and also using |σ4| ≤ 1 − |σ2|
2
− |σ1|

2 , we achieve∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ ≤ 1
64

E (|σ1| , |σ2|) ,

where

E (σ, t) = 1 − σ2 −
1
2

t2 +
5

576
σ6 +

3
2

t3 + 2t
(
1 − σ2 − t2

)
+

5
48
σ4t +

5
16
σ2t2

+
1
2
σ2

(
1 − σ2 − t2

)
, σ = |σ1| , t = |σ2| .

But E is a decreasing function of the variable σ; consequently,

E (σ, t) ≤ E (0, t) = 1 −
1
2

t2 −
1
2

t3 + 2t.

The function E (0, t) reaches its maximum value in [0, 1] if t = −1
3 +

1
3

√
13, so E (0, t) ≤ 2.0322, which

completes the proof. □

Conjecture 3.2. If the inverse of f ∈ S∗
Sg

is of the form (1.2), then∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ ≤ 1
64
.

Equality will be obtained by using (1.3)–(1.6) together with

2υ f ′ (υ)
f (υ) − f (−υ)

= 1 +
1
2
υ3 −

1
24
υ9 + · · · .
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4. Inverse coefficients for S∗3l,s

We begin this section by computing the estimates of the first three initial inverse coefficients for
functions in the family S∗3l,s.

Theorem 4.1. Let the inverse function of f ∈ S∗3l,s has the series form (1.2). Then

|B2| ≤
2
5
,

|B3| ≤
2
5
,

|B4| ≤
1
5
.

The equality can easily be obtained by utilizing (1.3) up to (1.5) together with

2υ f ′ (υ)
f (υ) − f (−υ)

= 1 +
1
2
υm −

1
24
υ4m + · · · , for m = 1, 2, 3. (4.1)

Proof. Let f ∈ S∗3l,s. Then we easily write

2υ f ′ (υ)
f (υ) − f (−υ)

= 1 +
4
5
ω (υ) +

1
5

(ω (υ))4 , υ ∈ D,

and here ω represents the Schwarz function. Also, let us assume that

ω (υ) = σ1υ + σ2υ
2 + σ3υ

3 + σ4υ
4 + · · · . (4.2)

Using (1.1) , we obtain

2υ f ′ (υ)
f (υ) − f (−υ)

= 1 + 2d2υ + 2d3υ
2 + (4d4 − 2d2d3) υ3

+
(
4d5 − 2d2

3

)
υ4 · · · . (4.3)

By some easy calculation and utilizing the series expansion of (4.2), we have

1 +
4
5
ω (υ) +

1
5

(ω (υ))4 = 1 +
4
5
σ1υ +

4
5
σ2υ

2 +
4
5
σ3υ

3 +

(
4
5
σ4 +

1
5
σ4

1

)
υ4 + · · · . (4.4)

Now, by comparing (4.3) and (4.4), we obtain

d2 =
2
5
σ1, (4.5)

d3 =
2
5
σ2, (4.6)

d4 =
1
5
σ3 +

2
25
σ1σ2, (4.7)

d5 =
1
5
σ4 +

1
20
σ4

1 +
2

25
σ2

2. (4.8)
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Substituting (4.5)–(4.8) in (1.3)–(1.6), we obtain

B2 = −
2
5
σ1, (4.9)

B3 =
8

25
σ2

1 −
2
5
σ2, (4.10)

B4 = −
8
25
σ3

1 −
1
5
σ3 +

18
25
σ1σ2, (4.11)

B5 =
771

2500
σ4

1 −
144
125
σ2

1σ2 +
12
25
σ1σ3 +

2
5
σ2

2 −
1
5
σ4. (4.12)

Using (2.2) in (4.9), we achieve

|B2| ≤
2
5
.

To prove the second inequality, we can write (4.10) as

|B3| =
2
5

∣∣∣∣∣∣σ2 +

(
−

4
5

)
σ2

1

∣∣∣∣∣∣ .
Applying (2.3) in the above equation, we achieve

|B3| ≤
2
5
.

From (4.11) , we deduce that

|B4| =
1
5

∣∣∣∣∣∣σ3 +

(
−

18
5

)
σ1σ2 +

8
5
σ3

1

∣∣∣∣∣∣ .
Comparing it with Lemma 2.1, we note that

ϱ = −
18
5

and ς =
8
5
.

It is clear that 2 ≤ |ϱ| ≤ 4 with

2 |ϱ| (|ϱ| + 1)
|ϱ|2 + 2 |ϱ| + 4

=
45

151
≤ ς and ς ≤

1
12

(
ϱ2 + 8

)
=

131
75
.

All the conditions of Lemma 2.1 are satisfied. Therefore

|B4| ≤
1
5
.

The required proof is thus completed. □

Now, we compute the Fekete–Szegö functional bound for the inverse function of f ∈ S∗3l,s.

Theorem 4.2. If f −1 is the inverse of the function f ∈ S∗3l,s with series expansion (1.2), then

∣∣∣B3 − τB2
2

∣∣∣ ≤ max
{

2
5
,

∣∣∣∣∣4τ − 8
25

∣∣∣∣∣} , τ ∈ C.

This functional bound is sharp.
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Proof. Putting (4.9) and (4.10), we obtain∣∣∣B3 − τB2
2

∣∣∣ = ∣∣∣∣∣−2
5
σ2 −

4τ
25
σ2

1 +
8
25
σ2

1

∣∣∣∣∣
=

2
5

∣∣∣∣∣∣σ2 +

(
2τ − 4

5

)
σ2

1

∣∣∣∣∣∣ .
Application of (2.3) leads us to ∣∣∣B3 − τB2

2

∣∣∣ ≤ max
{

2
5
,

∣∣∣∣∣4τ − 8
25

∣∣∣∣∣} .
The bound of the above functional is best possible, and it can easily be checked by (1.3), (1.4), and (4.1)
with m = 2. □

By replacing τ = 1 in Theorem 4.2, we arrive at the below result.
Corollary 4.3. If the inverse of the function f ∈ S∗3l,s is f −1 with series expansion (1.2), then

∣∣∣B3 − B2
2

∣∣∣ ≤ 2
5
.

This estimate is sharp, and equality will be obtained by using (1.3), (1.4), and (4.1) with m = 2.
Next, we investigate the Zalcman functional upper bound for f −1 ∈ S∗3l,s.

Theorem 4.4. If f ∈ S∗3l,s and its inverse function f −1 have the form (1.2), then

|B2B3 − B4| ≤
1
5
.

The above estimate is sharp.

Proof. Taking use of (4.9)–(4.11) , we achieve

|B2B3 − B4| =
1
5

∣∣∣∣∣∣σ3 +

(
−

14
5

)
σ1σ2 +

24
25
σ3

1

∣∣∣∣∣∣ .
From Lemma 2.1, let

ϱ = −
14
5

and ς =
24
25
.

It is clear that 2 ≤ |ϱ| ≤ 4 with

2 |ϱ| (|ϱ| + 1)
|ϱ|2 + 2 |ϱ| + 4

=
35

109
≤ ς and ς ≤

1
12

(
ϱ2 + 8

)
=

33
25
.

Thus, all the conditions of Lemma 2.1 are satisfied. Hence

|B2B3 − B4| ≤
1
5
.

The required estimate is best possible and will easily be obtained by using (1.3)–(1.5), and (4.1) with
m = 3. □
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Further, we intend to compute the Krushkal functional bound for the family S∗3l,s.

Theorem 4.5. If f ∈ S∗3l,s and its inverse function f −1 have the form (1.2), then

∣∣∣B4 − B3
2

∣∣∣ ≤ 1
5
.

This estimate is sharp.

Proof. Putting (4.9) and (4.11), we obtain

∣∣∣B4 − B3
2

∣∣∣ = 1
5

∣∣∣∣∣∣σ3 +

(
−

18
5

)
σ1σ2 +

(
32
25

)
σ3

1

∣∣∣∣∣∣ .
From Lemma 2.1, let

ϱ = −
18
5

and ς =
32
25
.

It is clear that 2 ≤ |ϱ| ≤ 4 with

2 |ϱ| (|ϱ| + 1)
|ϱ|2 + 2 |ϱ| + 4

=
45

151
≤ ς and ς ≤

1
12

(
ϱ2 + 8

)
=

131
75
.

Thus, all the conditions of Lemma 2.1 are satisfied. Hence∣∣∣B4 − B3
2

∣∣∣ ≤ 1
5
.

This estimate is best possible and will be confirmed by using (1.3), (1.5), and (4.1) with m = 3. □

In the upcoming result, we will investigate the estimate of Ĥ2,2

(
f −1

)
for the family S∗3l,s.

Theorem 4.6. Let the inverse function of f ∈ S∗3l,s has the series expansion (1.2). Then∣∣∣∣Ĥ2,2

(
f −1

)∣∣∣∣ ≤ 4
25
.

This inequality is sharp, and equality will easily be achieved by using (1.3)–(1.5) and (4.1) with m = 2.

Proof. The determinant Ĥ2,2

(
f −1

)
can be reconfigured as follows:

Ĥ2,2

(
f −1

)
= B2B4 − B2

3.

= −d2
3 + d2d4 − d2

2d3 + d4
2.

Substituting (4.9)–(4.11), we achieve∣∣∣∣Ĥ2,2

(
f −1

)∣∣∣∣ = 4
25

∣∣∣∣∣− 4
25
σ4

1 +
1
5
σ2

1σ2 −
1
2
σ1σ3 + σ

2
2

∣∣∣∣∣
=

4
25

∣∣∣∣∣∣12 (
σ2

2 − σ1σ3

)
+

1
2

(
−

8
25
σ4

1 +
2
5
σ2

1σ2 + σ
2
2

)∣∣∣∣∣∣
≤

4
50

∣∣∣σ2
2 − σ1σ3

∣∣∣ + 4
50

∣∣∣∣∣− 8
25
σ4

1 +
2
5
σ2

1σ2 + σ
2
2

∣∣∣∣∣
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=
4

50
Y1 +

4
50

Y2,

where
Y1 =

∣∣∣σ2
2 − σ1σ3

∣∣∣ ,
and

Y2 =

∣∣∣∣∣− 8
25
σ4

1 +
2
5
σ2

1σ2 + σ
2
2

∣∣∣∣∣ .
Utilizing Lemma 2.4, we acquire Y1 ≤ 1. Applying (2.4) along with triangle inequality for Y2, we have

|Y2| ≤
(
1 − |σ1|

2
)2
+

8
25
|σ1|

4 +
2
5

(
1 − |σ1|

2
)
|σ1|

2 .

By setting |σ1| = κ with κ ∈ (0, 1] , we obtain

|Y2| ≤ −
23κ4

25
−

8κ2

5
+ 1 = N (κ) .

Clearly N′ (κ) ≤ 0, N (κ) is a decreasing function of κ, indicating that it achieves its maxima at κ = 0,
that is,

|Y2| ≤ 1.

Therefore ∣∣∣∣Ĥ2,2

(
f −1

)∣∣∣∣ ≤ 4
50

Y1 +
4

50
Y2 ≤

4
25

and so the required proof is accomplished. □

Theorem 4.7. Let f −1 be the inverse of f ∈ S∗3l,s with series expansion (1.2). Then∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ < 0.11600.

Proof. The determinant
∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ is described as follows:∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ = ∣∣∣2B2B3B4 − B2
4 − B2

2B5 − B3
3 + B3B5

∣∣∣ .
From (4.9)–(4.12), we easily write∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ = 1
25

∣∣∣∣∣−σ2
3 +

4
5
σ2σ1σ3 −

61
625
σ6

1 −
12
5
σ3

2 −
67

250
σ4

1σ2

+
52
25
σ2

1σ
2
2 −

4
5
σ2

1σ4 + 2σ2σ4

∣∣∣∣∣ .
The below inequality follows easily by using Lemma 2.1 with ϱ = −4

5 and ς = 0∣∣∣∣∣∣σ3

[
σ3 +

(
−

4
5

)
σ1σ2 + (0)σ3

1

]∣∣∣∣∣∣ ≤ |σ3|
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and also by virtue of Lemma 2.3, we have

|σ3| ≤ 1 −
|σ2|

2

1 + |σ1|
− |σ1|

2
≤ 1 −

|σ2|
2

2
− |σ1|

2 .

Applying it and also using |σ4| ≤ 1 − |σ2|
2
− |σ1|

2 , we achieve∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ ≤ 1
25

E (|σ1| , |σ2|) ,

where

E (σ, t) = 1 − σ2 −
1
2

t2 +
61

625
σ6 +

12
5

t3 +
67

250
σ4t +

52
25
σ2t2 +

4
5
σ2

(
1 − σ2 − t2

)
+2t

(
1 − σ2 − t2

)
, σ = |σ1| , t = |σ2| .

But E is an increasing function of the variable σ; consequently,

E (σ, t) ≤ E (0, t) = 1 −
1
2

t2 +
2
5

t3 + 2t.

The function E (0, t) reaches its maximum value in [0, 1] if t = 1, so E (0, t) ≤ 29
10 , which completes the

proof. □

Conjecture 4.8. If the inverse of f ∈ S∗3l,s is of the form (1.2) , then∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ ≤ 1
25
.

This result is best possible.

5. Initial coefficients for SK exp

Next, we begin this section by determining the estimates of the first four initial coefficients for
functions in the family f ∈ SK exp.

Theorem 5.1. If the function f ∈ SK exp has the series form (1.1), then

|d2| ≤
1
4
,

|d3| ≤
1
6
,

|d4| ≤
1

16
,

|d5| ≤
1

20
.

The equality is attained by the following extremal functions:

2υ f ′ (υ)
f (υ) − f (−υ)

= 1 + υm +
1
2
υ2m + · · · , for m = 1, 2, 3, 4. (5.1)
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Proof. Let f ∈ SK exp. Then there exists a Schwarz function w such that

2 (υ f ′ (υ))′

( f (υ) − f (−υ))′
= eω(υ), υ ∈ D. (5.2)

Also, assuming that
ω (υ) = σ1υ + σ2υ

2 + σ3υ
3 + σ4υ

4 + · · · . (5.3)

Using (1.1), we obtain

2 (υ f ′ (υ))′

( f (υ) − f (−υ))′
:= 1 + 4d2υ + 6d3υ

2 + (−12d2d3 + 16d4) υ3 +
(
−18d2

3 + 20d5

)
υ4 + · · · . (5.4)

By some easy calculation and utilizing the series expansion of (5.3), we achieve

eω(υ) = 1 + σ1υ +

(
σ2 +

1
2
σ2

1

)
υ2 +

(
σ3 + σ1σ2 +

1
6
σ3

1

)
υ3

+

(
σ4 + σ1σ3 +

1
2
σ2

2 +
1

24
σ4

1 +
1
2
σ2

1σ2

)
υ4 + · · · . (5.5)

Now by comparing (5.4) and (5.5) , we have

d2 =
1
4
σ1, (5.6)

d3 =
1
6
σ2 +

1
12
σ2

1, (5.7)

d4 =
1

16
σ3 +

5
192
σ3

1 +
3

32
σ1σ2, (5.8)

d5 =
1

20
σ2

2 +
1

20
σ4 +

1
20
σ2

1σ2 +
1

20
σ1σ3 +

1
120
σ4

1. (5.9)

Using (2.2) in (5.6), we obtain

|d2| ≤
1
4
.

Rearranging of (5.7), we obtain

|d3| =
1
6

∣∣∣∣∣σ2 +
1
2
σ2

1

∣∣∣∣∣ .
Applying (2.3) in the above equation, we achieve

|d3| ≤
1
6
.

For d4, we can write (5.8), as

|d4| =
1

16

∣∣∣∣∣σ3 +
3
2
σ1σ2 +

5
12
σ3

1

∣∣∣∣∣ .
From Lemma 2.1, let

ϱ =
3
2

and ς =
5

12
.
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It is clear that 1
2 ≤ |ϱ| ≤ 2 with

4
27

(1 + |ϱ|)3
− (1 + |ϱ|) = −

5
27
≤ ς and ς ≤ 1.

Hence the conditions of Lemma 2.1 are satisfied. Therefore

|d4| ≤
1

16
.

From (5.9), we deduce that

|d5| =
1

20

∣∣∣∣∣∣12 (
2σ1σ3 + σ4 + σ

2
2 + σ

4
1 + 3σ2

1σ2

)
+

1
2

(
σ4 + σ

2
2 −

2
3
σ4

1 − σ
2
1σ2

)∣∣∣∣∣∣ . (5.10)

The initial segment is estimated by 1
2 by utilizing (2.7) with Λ = 1. Lemma 2.3 uses for the estimation

of the second segment in the following:

1
2

∣∣∣∣∣−2
3
σ4

1 + σ4 − σ
2
1σ2 + σ

2
2

∣∣∣∣∣ ≤ 1
2

[
− |σ2|

2
− |σ1|

2 + 1 +
2
3
|σ1|

4 + |σ1|
2
(
1 − |σ1|

2
)
+ |σ2|

2
]
.

= −
1 |σ1|

4

6
+

1
2
≤

1
2
.

By adding the bounds of the segments of (5.10) , we achieve

|d5| ≤
1

20
.

Thus, the proof is completed. □

6. Inverse coefficients for SK exp

Lastly, we will investigate the estimates of first three initial inverse coefficients for functions in the
family SK exp.

Theorem 6.1. If the inverse function of f ∈ SK exp is of the form (1.2), then

|B2| ≤
1
4
,

|B3| ≤
1
6
,

|B4| ≤
1
16
.

Equalities hold in these bounds and will be confirmed by using (1.3)–(1.5) and (5.1) with m = 1, 2, 3.

Proof. Applying (5.6)–(5.9) in (1.3)–(1.6), we achieve

B2 = −
1
4
σ1, (6.1)
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B3 =
1

24
σ2

1 −
1
6
σ2, (6.2)

B4 =
11
96
σ1σ2 −

1
16
σ3, (6.3)

B5 = −
1

320
σ4

1 −
43
960
σ2

1σ2 +
7

160
σ1σ3 +

1
30
σ2

2 −
1

20
σ4. (6.4)

Using (2.2) in (6.1), we obtain

|B2| ≤
1
4
.

For B3, we can write (6.2), as

|B3| =
1
6

∣∣∣∣∣∣σ2 +

(
−

1
4

)
σ2

1

∣∣∣∣∣∣ .
Applying (2.3) in the above equation, we achieve

|B3| ≤
1
6
.

For B4, we consider

|B4| =
1

16

∣∣∣∣∣∣σ3 +

(
−

11
6

)
σ1σ2 + (0)σ3

1

∣∣∣∣∣∣ .
From Lemma 2.1, let

ϱ = −
11
6

and ς = 0.

It is clear that 1
2 ≤ |ϱ| ≤ 2 with

−
2
3

(|ϱ| + 1) = −
17
9
≤ ς and ς ≤

4
27

(1 + |ϱ|)3
− (1 + |ϱ|) =

391
729
.

This shows that all conditions of Lemma 2.1 are satisfied. Thus

|B4| ≤
1

16
.

Thus, the required proof is completed. □

Theorem 6.2. If f ∈ SK exp has inverse function f −1 with a series form (1.2) , then

∣∣∣B3 − τB2
2

∣∣∣ ≤ max
1
6

{
1,

∣∣∣∣∣−2 + 3τ
8

∣∣∣∣∣} , τ ∈ C.

This inequality is sharp.

Proof. Employing (6.1) and (6.2), we have∣∣∣B3 − τB2
2

∣∣∣ = 1
6

∣∣∣∣∣σ2 −
1
4
σ2

1 +
3τ
8
σ2

1

∣∣∣∣∣ .
=

1
6

∣∣∣∣∣∣σ2 +

(
3τ − 2

8

)
σ2

1

∣∣∣∣∣∣ .
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Implementation of Lemma 2.2 along with triangle inequality leads us to

∣∣∣B3 − τB2
2

∣∣∣ ≤ max
1
6

{
1,

∣∣∣∣∣−2 + 3τ
8

∣∣∣∣∣} .
The functional bound is sharp and will be obtained from (1.3), (1.4), and (5.1) with m = 2. □

By replacing τ = 1 in Theorem 6.2, we arrive at the below result.
Corollary 6.3. If f ∈ SK exp has the inverse function with a series form (1.2), then

∣∣∣B3 − B2
2

∣∣∣ ≤ 1
6
.

The functional bound is sharp. Equality will be achieved by utilizing (1.3), (1.4), and (5.1) with m = 2.
Theorem 6.4. If the inverse of the function f ∈ SK exp is expressed in (1.2), then

|B4 − B2B3| ≤
1

16
.

This outcome is sharp, and it will be confirmed easily by using (1.3)–(1.5), and (5.1) with m = 3.

Proof. From (6.1)–(6.3), we have

|B4 − B2B3| =
1

16

∣∣∣∣∣σ3 −
7
6
σ1σ2 −

1
6
σ3

1

∣∣∣∣∣ .
From Lemma 2.1, let

ϱ = −
7
6

and ς = −
1
6
.

It is clear that 1
2 ≤ |ϱ| ≤ 2 with

4
27

(1 + |ϱ|)3
− (1 + |ϱ|) = −

481
729
≤ ς and ς ≤ 1.

Thus, all the conditions of Lemma 2.1 are satisfied. Hence

|B4 − B2B3| ≤
1

16

and hence the proof is completed. □

Theorem 6.5. If the inverse function of f ∈ SK exp is provided in (1.2) , then

∣∣∣B4 − B3
2

∣∣∣ ≤ 1
16
.

Equality will be held by using (1.3), (1.5), and (5.1) with m = 3.
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Proof. Putting (6.1) and (6.3), we have∣∣∣B4 − B3
2

∣∣∣ = 1
16

∣∣∣∣∣∣σ3 +

(
−

11
6

)
σ1σ2 +

(
−

1
4

)
σ3

1

∣∣∣∣∣∣ .
From Lemma 2.1, let

ϱ = −
11
6

and ς = −
1
4
.

It is clear that 1
2 ≤ |ϱ| ≤ 2 with

−
2
3

(|ϱ| + 1) = −
17
9
≤ ς and ς ≤

4
27

(1 + |ϱ|)3
− (1 + |ϱ|) =

391
729
.

Thus, all the conditions of Lemma 2.1 are satisfied. Hence∣∣∣B4 − B3
2

∣∣∣ ≤ 1
16
.

□

Theorem 6.6. Let f −1 be the inverse of f ∈ SK exp as defined in (1.2). Then∣∣∣∣Ĥ2,2

(
f −1

)∣∣∣∣ = ∣∣∣B2B4 − B2
3

∣∣∣ ≤ 1
36
.

Equality will be achieved by using (1.3)–(1.5) and (5.1) with m = 2.

Proof. From (6.1)–(6.3), we have∣∣∣∣Ĥ2,2

(
f −1

)∣∣∣∣ = 1
36

∣∣∣∣∣ 1
16
σ4

1 +
17
32
σ2

1σ2 −
9
16
σ1σ3 + σ

2
2

∣∣∣∣∣
=

1
36

∣∣∣∣∣∣12 (
σ2

2 − σ1σ3

)
+

1
2

(
1
8
σ4

1 −
1
8
σ1σ3 +

17
16
σ2

1σ2 + σ
2
2

)∣∣∣∣∣∣
≤

1
72

∣∣∣σ2
2 − σ1σ3

∣∣∣ + 1
72

∣∣∣∣∣18σ4
1 −

1
8
σ1σ3 +

17
16
σ2

1σ2 + σ
2
2

∣∣∣∣∣
=

1
72

R1 +
1

72
R2,

where
R1 =

∣∣∣σ2
2 − σ1σ3

∣∣∣
and

R2 =

∣∣∣∣∣18σ4
1 −

1
8
σ1σ3 +

17
16
σ2

1σ2 + σ
2
2

∣∣∣∣∣ .
Utilizing Lemma 2.4, we obtain R1 ≤ 1. Also, by virtue of Lemma 2.3 for R2, we achieve

|R2| ≤
17
16
|σ1|

2
|σ2| +

|σ1|
4

8
+ |σ2|

2 +
|σ1|

8

(
−
|σ2|

2

(|σ1| + 1)
− |σ1|

2 + 1
)

≤
|σ1|

4

8
+

17 |σ2| |σ1|
2

16
+

(
−

|σ1|

8 (|σ1| + 1)
+ 1

)
|σ2|

2
−
|σ1|

3

8
+
|σ1|

8
. (6.5)
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Since
(
−

|σ1 |

8(|σ1 |+1) + 1
)
> 0. Thus, we can substitute (2.4) in (6.5), and we easily obtain

|R2| ≤ −
|σ1|

3

8
+

17
16
|σ1|

2
(
1 − |σ1|

2
)
+

(
−

|σ1|

8 (|σ1| + 1)
+ 1

) (
1 − |σ1|

2
)2

+
|σ1|

8
+
|σ1|

4

8
.

The basic computation of maximum and minimum leads us to

|R2| ≤ 1.

Hence ∣∣∣∣Ĥ2,2

(
f −1

)∣∣∣∣ ≤ 1
72

R1 +
1

72
R2 ≤

1
36
.

The proof is thus accomplished. □

Theorem 6.7. Let f −1 be the inverse function of f ∈ SK exp and is expressed in (1.2). Then∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ < 0.006671.

Proof. The determinant
∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ can be expressed as follows:∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ = ∣∣∣2B2B3B4 − B2
4 − B2

2B5 − B3
3 + B3B5

∣∣∣ .
From (6.1)–(6.4), we easily write∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ = 1
256

∣∣∣∣∣∣−σ2
3 +

(
7
15
σ2 +

1
10
σ2

1

)
σ1σ3 −

1
540
σ6

1 −
1

60
σ4

1σ2 −
13

180
σ2

1σ
2
2

+
4

15
σ2

1σ4 −
32

135
σ3

2 +
32
15
σ2σ4

∣∣∣∣∣ .
At the beginning, it should be noted that∣∣∣∣∣∣σ3

[
σ3 +

(
−

7
15

)
σ1σ2 +

(
−

1
10

)
σ3

1

]∣∣∣∣∣∣ ≤ |σ3| ,

where we have used Lemma 2.1 with ϱ = − 7
15 and ς = − 1

10 . Also, by using Lemma 2.3, we have

|σ3| ≤ 1 −
|σ2|

2

1 + |σ1|
− |σ1|

2
≤ 1 −

|σ2|
2

2
− |σ1|

2 .

Applying it and also using |σ4| ≤ 1 − |σ2|
2
− |σ1|

2 , we achieve∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ ≤ 1
256

E (|σ1| , |σ2|) ,

where

E (σ, t) = 1 − σ2 −
1
2

t2 +
1

540
σ6 +

1
60
σ4t +

13
180
σ2t2 +

4
15
σ2

(
1 − σ2 − t2

)
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+
32

135
t3 +

32
15

t
(
1 − σ2 − t2

)
, σ = |σ1| , t = |σ2| .

But E is a decreasing function of the variable σ; consequently,

E (σ, t) ≤ E (0, t) = 1 −
1
2

t2 −
256
135

t3 +
32
15

t.

The function E (0, t) reaches its maximum value in [0, 1] if t = − 45
512+

1
512

√
100329, so E (0, t) ≤ 1.7079,

which completes the proof. □

Conjecture 6.8. If the inverse function of f ∈ SK exp is of the form (1.2), then the sharp bounds∣∣∣∣Ĥ3,1

(
f −1

)∣∣∣∣ ≤ 1
256
.

Equality will be achieved by using (1.3)–(1.5) and (5.1) with m = 3.

7. Conclusions

The study of Hankel determinant bounds is of great importance in the research community due to
its vast applications in mathematical science. In the current article, we have considered the Hankel
determinant involving the coefficients of inverse functions for various subclasses of analytic functions.
This generalizes the classical definition of the Hankel determinant and could provide more knowledge
of inverse functions. The main focus of this article that we have studied is the coefficient-related
problems along with Hankel determinants for the inverse function of the functions that belong to the
families of symmetric starlike and symmetric convex functions associated with three different image
domains. In particular, these problems include the sharp estimates of some initial inverse coefficients,
the Zalcman, Fekete–Szegö, and Krushkal inequalities, along with the sharp estimation of second and
third Hankel determinants containing inverse coefficients for functions in the mentioned families by
using the concept of a Schwarz function. Also, we have given some conjectures that strongly support
our obtained results. Our research introduces a new framework for analyzing the Hankel determinant,
emphasizing the importance of inverse coefficients in analytic functions, potentially promoting more
attention to coefficient-related problems. This study may be applied to meromorphic analytic functions,
and the same methodology can be used to examine higher-order Hankel determinants, as studied in
articles [46–48].
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