In this manuscript, we prove the existence and uniqueness of a common best proximity point for a pair of non-self mappings satisfying the iterative mappings in a complete fuzzy multiplicative metric space. We consider the pair of non-self mappings $ X:\mathcal{P}\rightarrow \mathcal{G} $ and $ Z:\mathcal{P }\rightarrow \mathcal{G} $ and the mappings do not necessarily have a common fixed-point. In a complete fuzzy multiplicative metric space, if $ \mathcal{\varphi } $ satisfy the condition $ \mathcal{\varphi } \left(b, Zb, \varsigma \right) = \mathcal{\varphi }\left(\mathcal{P}, \mathcal{ G}, \varsigma \right) = \mathcal{\varphi }\left(b, Xb, \varsigma \right) $, then $ b $ is a common best proximity point. Further, we obtain the common best proximity point for the real valued functions $ \mathcal{L}, \mathcal{M}:(0, 1]\rightarrow \mathbb{R} $ by using a generalized fuzzy multiplicative metric space in the setting of $ (\mathcal{L}, \mathcal{M}) $-iterative mappings. Furthermore, we utilize fuzzy multiplicative versions of the $ (\mathcal{L}, \mathcal{M}) $-proximal contraction, $ (\mathcal{L}, \mathcal{M}) $-interpolative Reich-Rus-Ciric type proximal contractions, $ (\mathcal{L}, \mathcal{M}) $-Kannan type proximal contraction and $ (\mathcal{L}, \mathcal{M}) $-interpolative Hardy-Rogers type proximal contraction to examine the common best proximity points in fuzzy multiplicative metric space. Moreover, we provide differential non-trivial examples to support our results.
Citation: Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen. Generalized common best proximity point results in fuzzy multiplicative metric spaces[J]. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299
In this manuscript, we prove the existence and uniqueness of a common best proximity point for a pair of non-self mappings satisfying the iterative mappings in a complete fuzzy multiplicative metric space. We consider the pair of non-self mappings $ X:\mathcal{P}\rightarrow \mathcal{G} $ and $ Z:\mathcal{P }\rightarrow \mathcal{G} $ and the mappings do not necessarily have a common fixed-point. In a complete fuzzy multiplicative metric space, if $ \mathcal{\varphi } $ satisfy the condition $ \mathcal{\varphi } \left(b, Zb, \varsigma \right) = \mathcal{\varphi }\left(\mathcal{P}, \mathcal{ G}, \varsigma \right) = \mathcal{\varphi }\left(b, Xb, \varsigma \right) $, then $ b $ is a common best proximity point. Further, we obtain the common best proximity point for the real valued functions $ \mathcal{L}, \mathcal{M}:(0, 1]\rightarrow \mathbb{R} $ by using a generalized fuzzy multiplicative metric space in the setting of $ (\mathcal{L}, \mathcal{M}) $-iterative mappings. Furthermore, we utilize fuzzy multiplicative versions of the $ (\mathcal{L}, \mathcal{M}) $-proximal contraction, $ (\mathcal{L}, \mathcal{M}) $-interpolative Reich-Rus-Ciric type proximal contractions, $ (\mathcal{L}, \mathcal{M}) $-Kannan type proximal contraction and $ (\mathcal{L}, \mathcal{M}) $-interpolative Hardy-Rogers type proximal contraction to examine the common best proximity points in fuzzy multiplicative metric space. Moreover, we provide differential non-trivial examples to support our results.
[1] | K. Fan, Extensions of two fixed-point theorems of F. E. Browder, Math. Z., 112 (1969), 234–240. https://doi.org/10.1007/BF01110225 doi: 10.1007/BF01110225 |
[2] | E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theor. Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135 |
[3] | I. Altun, M. Aslantas, H. Sahin, Best proximity point results for p-proximal contractions, Acta Math. Hungar., 162 (2020), 393–402. https://doi.org/10.1007/s10474-020-01036-3 doi: 10.1007/s10474-020-01036-3 |
[4] | I. Altun, A. Taşdemir, On best proximity points of interpolative proximal contractions, Quaest. Math., 44 (2021), 1233–1241. https://doi.org/10.2989/16073606.2020.1785576 doi: 10.2989/16073606.2020.1785576 |
[5] | N. Shahzad, S. S. Basha, R. Jeyaraj, Common best proximity points: global optimal solutions, J. Optim. Theory Appl., 148 (2011), 69–78. https://doi.org/10.1007/s10957-010-9745-7 doi: 10.1007/s10957-010-9745-7 |
[6] | S. S. Basha, Common best proximity points: Global minimal solutions, Top, 21 (2013), 182–188. https://doi.org/10.1007/s11750-011-0171-2 doi: 10.1007/s11750-011-0171-2 |
[7] | S. S. Basha, Common best proximity points: Global minimization of multi-objective functions, J. Glob. Optim., 54 (2012), 367–373. https://doi.org/10.1007/s10898-011-9760-8 doi: 10.1007/s10898-011-9760-8 |
[8] | A. Deep, R. Batra, Common best proximity point theorems under proximal F-weak dominance in complete metric spaces, J. Anal., 2023. https://doi.org/10.1007/s41478-023-00570-x |
[9] | S. Mondal, L. K. Dey, Some common best proximity point theorems in a complete metric space, Afr. Mat., 28 (2017), 85–97. https://doi.org/10.1007/s13370-016-0432-1 doi: 10.1007/s13370-016-0432-1 |
[10] | H. Shayanpour, A. Nematizadeh, Some results on common best proximity point in fuzzy metric, Bol. Soc. Parana. Mat., 35 (2017), 177–194. https://doi.org/10.5269/bspm.v35i2.29466 doi: 10.5269/bspm.v35i2.29466 |
[11] | A. F. Roldán López de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov-type fixed-point results in non-Archimedean fuzzy metric spaces, Mathematics, 9 (2021), 1594. https://doi.org/10.3390/math9141594 doi: 10.3390/math9141594 |
[12] | M. Zhou, N. Saleem, X. Liu, A. Fulga, A. F. Roldán Ló pez de Hierro, A new approach to Proinov-type fixed-point results in non-Archimedean fuzzy metric spaces, Mathematics, 9 (2021), 3001. https://doi.org/10.3390/math9233001 doi: 10.3390/math9233001 |
[13] | C. Vetro, P. Salimi, Best proximity point results in non-Archimedean fuzzy metric spaces, Fuzzy Inform. Eng., 5 (2013), 417–429. https://doi.org/10.1007/s12543-013-0155-z doi: 10.1007/s12543-013-0155-z |
[14] | M. Paknazar, Non-Archimedean fuzzy metric spaces and best proximity point theorems, Sahand Commun. Math. A., 9 (2018), 85–112. https://doi.org/10.22130/scma.2018.24627 doi: 10.22130/scma.2018.24627 |
[15] | M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, 1972. |
[16] | A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081 |
[17] | C. Mongkolkeha, W. Sintunavarat, Best proximity points for multiplicative proximal contraction mapping on multiplicative metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 1134–1140. http://dx.doi.org/10.22436/jnsa.008.06.22 doi: 10.22436/jnsa.008.06.22 |
[18] | M. Farheen, T. Kamran, A. Hussain, Best proximity point theorems for single and multivalued mappings in fuzzy multiplicative metric space, J. Funct. Space., 2021 (2021), 1373945. https://doi.org/10.1155/2021/1373945 doi: 10.1155/2021/1373945 |
[19] | F. Uddin, U. Ishtiaq, K. Javed, S. S. Aiadi, M. Arshad, N. Souayah, et al., A new extension to the intuitionistic fuzzy metric-like spaces, Symmetry, 14 (2022), 1400. https://doi.org/10.3390/sym14071400 doi: 10.3390/sym14071400 |
[20] | N. Saleem, U. Ishtiaq, L. Guran, F. M. Bota, On graphical fuzzy metric spaces with application to fractional differential equations, Fractal Fract., 6 (2022), 238. https://doi.org/10.3390/fractalfract6050238 doi: 10.3390/fractalfract6050238 |
[21] | U. Ishtiaq, A. Hussain, H. Al-Sulami, Certain new aspects in fuzzy fixed-point theory, AIMS Math., 7 (2022), 8558–8573. https://doi.org/10.3934/math.2022477 doi: 10.3934/math.2022477 |
[22] | A. Shcheglov, J. Li, C. Wang, A. Ilin, Y. Zhang, Reconstructing the absorption function in a quasi-linear sorption dynamic model via an iterative regularizing algorithm, Adv. Appl. Math. Mech., 2023. https://doi.org/10.4208/aamm.OA-2023-0020 |
[23] | Y. Zhang, B. Hofmann, Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems, Inverse Probl. Imag., 15 (2021), 229–256. https://doi.org/10.3934/ipi.2020062 doi: 10.3934/ipi.2020062 |
[24] | G. Lin, X. Cheng, Y. Zhang, A parametric level set based collage method for an inverse problem in elliptic partial differential equations, J. Comput. Appl. Math., 340 (2018), 101–121. https://doi.org/10.1016/j.cam.2018.02.008 doi: 10.1016/j.cam.2018.02.008 |
[25] | G. Baravdish, O. Svensson, M. Gulliksson, Y. Zhang, Damped second order flow applied to image denoising, IMA J. Appl. Math., 84 (2019), 1082–1111. https://doi.org/10.1093/imamat/hxz027 doi: 10.1093/imamat/hxz027 |