Research article

Common best proximity point theorems for proximally weak reciprocal continuous mappings

  • Received: 14 August 2023 Revised: 21 September 2023 Accepted: 25 September 2023 Published: 13 October 2023
  • MSC : 47H09, 47H10

  • The main objective of this paper is to find sufficient conditions for the existence and uniqueness of common best proximity points for discontinuous non-self mappings in the setting of a complete metric space. We introduce and analyze new concepts such as proximally reciprocal continuous, proximally weak reciprocal continuous, R-proximally weak commuting of types $ M_{\Lambda} $ and $ M_{\Gamma} $ for non-self mappings. Furthermore, we obtain a common best proximity point theorem for such mappings. In addition, we provide an example to support our main result.

    Citation: A. Sreelakshmi Unni, V. Pragadeeswarar, Manuel De la Sen. Common best proximity point theorems for proximally weak reciprocal continuous mappings[J]. AIMS Mathematics, 2023, 8(12): 28176-28187. doi: 10.3934/math.20231442

    Related Papers:

  • The main objective of this paper is to find sufficient conditions for the existence and uniqueness of common best proximity points for discontinuous non-self mappings in the setting of a complete metric space. We introduce and analyze new concepts such as proximally reciprocal continuous, proximally weak reciprocal continuous, R-proximally weak commuting of types $ M_{\Lambda} $ and $ M_{\Gamma} $ for non-self mappings. Furthermore, we obtain a common best proximity point theorem for such mappings. In addition, we provide an example to support our main result.



    加载中


    [1] M. A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. Theor., 70 (2009), 3665–3671. https://doi.org/10.1016/j.na.2008.07.022 doi: 10.1016/j.na.2008.07.022
    [2] A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081 doi: 10.1016/j.jmaa.2005.10.081
    [3] C. Di Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. Theor., 69 (2008), 3790–3794. https://doi.org/10.1016/j.na.2007.10.014 doi: 10.1016/j.na.2007.10.014
    [4] V. Pragadeeswarar, M. Marudai, Best proximity points: approximation and optimization in partially ordered metric spaces, Optim. Lett., 7 (2012), 1883–1892. https://doi.org/10.1007/s11590-012-0529-x doi: 10.1007/s11590-012-0529-x
    [5] S. S. Basha, P. Veeramani, Best approximations and best proximity pairs, Acta. Sci. Math., 63 (1997), 289–300.
    [6] S. S. Basha, P. Veeramani, D. V. Pai, Best proximity pair theorems, Indian J. Pure Appl. Math., 32 (2001), 1237–1246. https://doi.org/10.1093/imamat/66.4.411 doi: 10.1093/imamat/66.4.411
    [7] S. S. Basha, Best proximity points: optimal solutions, J. Optim. Theory Appl., 151 (2011), 210–216. https://doi.org/10.1007/s10957-011-9869-4 doi: 10.1007/s10957-011-9869-4
    [8] V. S. Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal. Theor., 74 (2011), 4804–4808. https://doi.org/10.1016/j.na.2011.04.052 doi: 10.1016/j.na.2011.04.052
    [9] M. R. Haddadi, V. Parvaneh, M. Mursaleen, Global optimal approximate solutions of best proximity points, Filomat, 35 (2021), 1555–1564. https://doi.org/10.2298/FIL2105555H doi: 10.2298/FIL2105555H
    [10] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., 2010 (2010), 978121. https://doi.org/10.1155/2010/978121 doi: 10.1155/2010/978121
    [11] R. Chugh, S. Kumar, Common fixed points for weakly compatible maps, Proc. Indian Acad. Sci. (Math. Sci.), 111 (2001), 241–247. https://doi.org/10.1007/BF02829594 doi: 10.1007/BF02829594
    [12] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-4896-0
    [13] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013), 562. https://doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562
    [14] J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenović, Common fixed point theorems for three maps in discontinuous Gb metric spaces, Acta Math. Sci., 34 (2014), 1643–1654. https://doi.org/10.1016/S0252-9602(14)60110-7 doi: 10.1016/S0252-9602(14)60110-7
    [15] H. Isik, V. Parvaneh, B. Mohammadi, I. Altun, Common fixed point results for generalized Wardowski type contractive multi-valued mappings, Mathematics, 7 (2019), 1130. https://doi.org/10.3390/math7111130 doi: 10.3390/math7111130
    [16] H. K. Pathak, Y. J. Cho, S. M. Kang, Remarks of R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc., 34 (1997), 247–257.
    [17] S. S. Basha, N. Shahzad, R. Jeyaraj, Common best proximity points: global optimization of multi-objective functions, Appl. Math. Lett., 24 (2011), 883–886. https://doi.org/10.1016/j.aml.2010.12.043 doi: 10.1016/j.aml.2010.12.043
    [18] N. Shahzad, S. S. Basha, R. Jeyaraj, Common best proximity points: global optimal solutions, J. Optim. Theory Appl., 148 (2011), 69–78. https://doi.org/10.1007/s10957-010-9745-7 doi: 10.1007/s10957-010-9745-7
    [19] S. S. Basha, Common best proximity points: global minimization of multi-objective functions, J. Glob. Optim., 54 (2012), 367–373. https://doi.org/10.1007/s10898-011-9760-8 doi: 10.1007/s10898-011-9760-8
    [20] C. Mongkolkeha, P. Kumam, Some common best proximity points for proximity commuting mappings, Optim. Lett., 7 (2013), 1825–1836. https://doi.org/10.1007/s11590-012-0525-1 doi: 10.1007/s11590-012-0525-1
    [21] M. Gabeleh, J. Markin, Common best proximity pairs via the concept of complete proximal normal structure, Ann. Funct. Anal., 11 (2020), 831–847. https://doi.org/10.1007/s43034-020-00057-x doi: 10.1007/s43034-020-00057-x
    [22] S. Mondal, L. K. Dey, Some common best proximity point theorems in a complete metric space, Afr. Mat., 28 (2017), 85–97. https://doi.org/10.1007/s13370-016-0432-1 doi: 10.1007/s13370-016-0432-1
    [23] P. L$o'$l$o'$, S. M. Vaezpour, J. Esmaily, Common best proximity points theorem for four mappings in metric-type spaces, Fixed Point Theory Appl., 2015 (2015), 47. https://doi.org/10.1186/s13663-015-0298-1 doi: 10.1186/s13663-015-0298-1
    [24] P. L$o'$l$o'$, S. M. Vaezpour, R. Saadati, Common best proximity points results for new proximal C-contraction mappings, Fixed Point Theory Appl., 2016 (2016), 56. https://doi.org/10.1186/s13663-016-0545-0 doi: 10.1186/s13663-016-0545-0
    [25] V. Pragadeeswarar, R. Gopi, M. De la Sen, S. Radenovi'c, Proximally compatible mappings and common best proximity points, Symmetry, 12 (2020), 353. https://doi.org/10.3390/sym12030353 doi: 10.3390/sym12030353
    [26] V. Pragadeeswarar, G. Poonguzali, M. Marudai, S. Radenović, Common best proximity point theorem for multivalued mappings in partially ordered metric spaces, Fixed Point Theory Appl., 2017 (2017), 22. https://doi.org/10.1186/s13663-017-0615-y doi: 10.1186/s13663-017-0615-y
    [27] J. Puangpee, S. Suantai, New hybrid algorithms for global minimization of common best proximity points of some generalized nonexpansive mappings, Filomat, 33 (2019), 2381–2391. https://doi.org/10.2298/FIL1908381P doi: 10.2298/FIL1908381P
    [28] R. P. Pant, A common fixed point theorm under a new condition, Indian J. Pure Appl. Math., 30 (1999), 147–152.
    [29] R. P. Pant, R. K. Bisht, D. Arora, Weak reciprocal continuity and fixed point theorems, Ann. Univ. Ferrara, 57 (2011), 181–190. https://doi.org/10.1007/s11565-011-0119-3 doi: 10.1007/s11565-011-0119-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1413) PDF downloads(89) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog