The goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a triple beam system commonly known as the Rao-Nakra beam model. We consider the effect of Gurtin-Pipkin's thermal law on the outer layers of the beam system. Using standard semi-group theory for linear operators and the multiplier method, we establish the existence and uniqueness of weak global solution, as well as a stability result.
Citation: Soh Edwin Mukiawa. Well-posedness and stabilization of a type three layer beam system with Gurtin-Pipkin's thermal law[J]. AIMS Mathematics, 2023, 8(12): 28188-28209. doi: 10.3934/math.20231443
The goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a triple beam system commonly known as the Rao-Nakra beam model. We consider the effect of Gurtin-Pipkin's thermal law on the outer layers of the beam system. Using standard semi-group theory for linear operators and the multiplier method, we establish the existence and uniqueness of weak global solution, as well as a stability result.
[1] | Y. V. K. S. Rao, B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vibr., 34 (1974), 309–326. https://doi.org/10.1016/S0022-460X(74)80315-9 doi: 10.1016/S0022-460X(74)80315-9 |
[2] | D. J. Mead, S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibr., 10 (1969), 163–175. https://doi.org/10.1016/0022-460X(69)90193-X doi: 10.1016/0022-460X(69)90193-X |
[3] | M. J. Yan, E. H. Dowell, Governing equations for vibrating constrained-layer damping sandwich plates and beams, J. Appl. Mech., 39 (1972), 1041–1047. https://doi.org/10.1115/1.3422825 doi: 10.1115/1.3422825 |
[4] | S. W. Hansen, Several related models for multilayer sandwich plates, Math. Models Methods Appl. Sci., 14 (2004), 1103–1132. https://doi.org/10.1142/S0218202504003568 doi: 10.1142/S0218202504003568 |
[5] | A. Ö. Özer, S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evolution Equ. Control Theory, 2 (2013), 695–710. https://doi.org/10.3934/eect.2013.2.695 doi: 10.3934/eect.2013.2.695 |
[6] | Z. Liu, S. A. Trogdon, J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Model., 30 (1999), 149–167. https://doi.org/10.1016/S0895-7177(99)00122-3 doi: 10.1016/S0895-7177(99)00122-3 |
[7] | S. W. Hansen, R. D. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound Vibr., 204 (1997), 183–202. https://doi.org/10.1006/jsvi.1996.0913 doi: 10.1006/jsvi.1996.0913 |
[8] | Y. F. Li, Z. Y. Liu, Y. Wang, Weak stability of a laminated beam, Math. Control Relat. Fields, 8 (2018), 789–808. https://doi.org/10.3934/mcrf.2018035 doi: 10.3934/mcrf.2018035 |
[9] | T. Q. Méndez, V. C. Zannini, B. W. Feng, Asymptotic behavior of the Rao-Nakra sandwich beam model with Kelvin-Voigt damping, Math. Mech. Solids, 2023. https://doi.org/10.1177/10812865231180535 doi: 10.1177/10812865231180535 |
[10] | B. W. Feng, A. Ö. Özer, Long-time behavior of a nonlinearly-damped three-layer Rao-Nakra sandwich beam, Appl. Math. Optim., 87 (2023), 19. https://doi.org/10.1007/s00245-022-09931-7 doi: 10.1007/s00245-022-09931-7 |
[11] | B. W. Feng, C. A. Raposo, C. A. Nonato, A. Soufyane, Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability, Math. Control Relat. Fields, 13 (2023), 631–663. https://doi.org/10.3934/mcrf.2022011 doi: 10.3934/mcrf.2022011 |
[12] | S. E. Mukiawa, C. D. Enyi, J. D. Audu, Well-posedness and stability result for a thermoelastic Rao-Nakra beam model, J. Therm. Stresses, 45 (2022), 720–739. https://doi.org/10.1080/01495739.2022.2074931 doi: 10.1080/01495739.2022.2074931 |
[13] | C. A. Raposo, O. P. V. Villagran, J. Ferreira, E. Pişkin, Rao-Nakra sandwich beam with second sound, Part. Differ. Equ. Appl. Math., 4 (2021), 100053. https://doi.org/10.1016/j.padiff.2021.100053 doi: 10.1016/j.padiff.2021.100053 |
[14] | Z. Y. Liu, B. P. Rao, Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Differ. Equ., 269 (2020), 6125–6162. https://doi.org/10.1016/j.jde.2020.04.030 doi: 10.1016/j.jde.2020.04.030 |
[15] | S. W. Hansen, O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 1 (2011), 189–230. https://doi.org/10.3934/mcrf.2011.1.189 doi: 10.3934/mcrf.2011.1.189 |
[16] | S. W. Hansen, O. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions, ESAIM Control Optim. Calc. Var., 17 (2011), 1101–1132. https://doi.org/10.1051/cocv/2010040 doi: 10.1051/cocv/2010040 |
[17] | S. W. Hansen, R. Rajaram, Simultaneous boundary control of a Rao-Nakra sandwich beam, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 3146–3151. https://doi.org/10.1109/CDC.2005.1582645 |
[18] | S. W. Hansen, R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Conf. Publ., 2005 (2005), 365–375. |
[19] | R. Rajaram, Exact boundary controllability result for a Rao-Nakra sandwich beam, Syst. Control Lett., 56 (2007), 558–567. https://doi.org/10.1016/j.sysconle.2007.03.007 doi: 10.1016/j.sysconle.2007.03.007 |
[20] | C. A. Raposo, Rao-Nakra model with internal damping and time delay, Math. Morav., 25 (2021), 53–67. https://doi.org/10.5937/MatMor2102053R doi: 10.5937/MatMor2102053R |
[21] | M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite waves peeds, Arch. Rational Mech. Anal., 31 (1968), 113–126. https://doi.org/10.1007/BF00281373 doi: 10.1007/BF00281373 |
[22] | F. Dell'Oro, V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Differ. Equ., 257 (2014), 523–548. https://doi.org/10.1016/j.jde.2014.04.009 doi: 10.1016/j.jde.2014.04.009 |
[23] | A. Fareh, Exponential stability of a Timoshenko type thermoelastic system with Gurtin-Pipkin thermal law and frictional damping, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71 (2022), 95–115. https://doi.org/10.31801/cfsuasmas.847038 doi: 10.31801/cfsuasmas.847038 |
[24] | W. J. Liu, W. F. Zhao, On the stability of a laminated beam with structural damping and Gurti-Pipkin thermal law, Nonlinear Anal. Model. Control, 26 (2021), 396–418. https://doi.org/10.15388/namc.2021.26.23051 doi: 10.15388/namc.2021.26.23051 |
[25] | T. A. Apalara, O. B. Almutairi, Well-posedness and exponential stability of swelling porous with Gurtin-Pipkin thermoelasticity, Mathematics, 10 (2022), 1–17. https://doi.org/10.3390/math10234498 doi: 10.3390/math10234498 |
[26] | M. Khader, B. Said-Houari, On the decay rate of solutions of the Bresse system with Gurtin-Pipkin thermal law, Asymptot. Anal., 103 (2017), 1–32. https://doi.org/10.3233/ASY-171417 doi: 10.3233/ASY-171417 |
[27] | D. Hanni, B. W. Feng, K. Zennir, Stability of Timoshenko system coupled with thermal law of Gurtin-Pipkin affecting on shear force, Appl. Anal., 101 (2022), 5171–5192. https://doi.org/10.1080/00036811.2021.1883591 doi: 10.1080/00036811.2021.1883591 |
[28] | F. Dell'Oro, On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Differ. Equ., 281 (2021), 148–198. https://doi.org/10.1016/j.jde.2021.02.009 doi: 10.1016/j.jde.2021.02.009 |
[29] | B. D. Coleman, M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199–208. https://doi.org/10.1007/BF01596912 doi: 10.1007/BF01596912 |
[30] | C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differ. Equ., 7 (1970), 554–569. https://doi.org/10.1016/0022-0396(70)90101-4 doi: 10.1016/0022-0396(70)90101-4 |
[31] | A. Pazzy, Semigroups of linear operators and application to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |