Research article Special Issues

Well-posedness and stabilization of a type three layer beam system with Gurtin-Pipkin's thermal law

  • Received: 14 June 2023 Revised: 03 September 2023 Accepted: 08 October 2023 Published: 13 October 2023
  • MSC : 35B35, 35B40, 35D30, 35D35, 93D20

  • The goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a triple beam system commonly known as the Rao-Nakra beam model. We consider the effect of Gurtin-Pipkin's thermal law on the outer layers of the beam system. Using standard semi-group theory for linear operators and the multiplier method, we establish the existence and uniqueness of weak global solution, as well as a stability result.

    Citation: Soh Edwin Mukiawa. Well-posedness and stabilization of a type three layer beam system with Gurtin-Pipkin's thermal law[J]. AIMS Mathematics, 2023, 8(12): 28188-28209. doi: 10.3934/math.20231443

    Related Papers:

  • The goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a triple beam system commonly known as the Rao-Nakra beam model. We consider the effect of Gurtin-Pipkin's thermal law on the outer layers of the beam system. Using standard semi-group theory for linear operators and the multiplier method, we establish the existence and uniqueness of weak global solution, as well as a stability result.



    加载中


    [1] Y. V. K. S. Rao, B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vibr., 34 (1974), 309–326. https://doi.org/10.1016/S0022-460X(74)80315-9 doi: 10.1016/S0022-460X(74)80315-9
    [2] D. J. Mead, S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibr., 10 (1969), 163–175. https://doi.org/10.1016/0022-460X(69)90193-X doi: 10.1016/0022-460X(69)90193-X
    [3] M. J. Yan, E. H. Dowell, Governing equations for vibrating constrained-layer damping sandwich plates and beams, J. Appl. Mech., 39 (1972), 1041–1047. https://doi.org/10.1115/1.3422825 doi: 10.1115/1.3422825
    [4] S. W. Hansen, Several related models for multilayer sandwich plates, Math. Models Methods Appl. Sci., 14 (2004), 1103–1132. https://doi.org/10.1142/S0218202504003568 doi: 10.1142/S0218202504003568
    [5] A. Ö. Özer, S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evolution Equ. Control Theory, 2 (2013), 695–710. https://doi.org/10.3934/eect.2013.2.695 doi: 10.3934/eect.2013.2.695
    [6] Z. Liu, S. A. Trogdon, J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Model., 30 (1999), 149–167. https://doi.org/10.1016/S0895-7177(99)00122-3 doi: 10.1016/S0895-7177(99)00122-3
    [7] S. W. Hansen, R. D. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound Vibr., 204 (1997), 183–202. https://doi.org/10.1006/jsvi.1996.0913 doi: 10.1006/jsvi.1996.0913
    [8] Y. F. Li, Z. Y. Liu, Y. Wang, Weak stability of a laminated beam, Math. Control Relat. Fields, 8 (2018), 789–808. https://doi.org/10.3934/mcrf.2018035 doi: 10.3934/mcrf.2018035
    [9] T. Q. Méndez, V. C. Zannini, B. W. Feng, Asymptotic behavior of the Rao-Nakra sandwich beam model with Kelvin-Voigt damping, Math. Mech. Solids, 2023. https://doi.org/10.1177/10812865231180535 doi: 10.1177/10812865231180535
    [10] B. W. Feng, A. Ö. Özer, Long-time behavior of a nonlinearly-damped three-layer Rao-Nakra sandwich beam, Appl. Math. Optim., 87 (2023), 19. https://doi.org/10.1007/s00245-022-09931-7 doi: 10.1007/s00245-022-09931-7
    [11] B. W. Feng, C. A. Raposo, C. A. Nonato, A. Soufyane, Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability, Math. Control Relat. Fields, 13 (2023), 631–663. https://doi.org/10.3934/mcrf.2022011 doi: 10.3934/mcrf.2022011
    [12] S. E. Mukiawa, C. D. Enyi, J. D. Audu, Well-posedness and stability result for a thermoelastic Rao-Nakra beam model, J. Therm. Stresses, 45 (2022), 720–739. https://doi.org/10.1080/01495739.2022.2074931 doi: 10.1080/01495739.2022.2074931
    [13] C. A. Raposo, O. P. V. Villagran, J. Ferreira, E. Pişkin, Rao-Nakra sandwich beam with second sound, Part. Differ. Equ. Appl. Math., 4 (2021), 100053. https://doi.org/10.1016/j.padiff.2021.100053 doi: 10.1016/j.padiff.2021.100053
    [14] Z. Y. Liu, B. P. Rao, Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Differ. Equ., 269 (2020), 6125–6162. https://doi.org/10.1016/j.jde.2020.04.030 doi: 10.1016/j.jde.2020.04.030
    [15] S. W. Hansen, O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 1 (2011), 189–230. https://doi.org/10.3934/mcrf.2011.1.189 doi: 10.3934/mcrf.2011.1.189
    [16] S. W. Hansen, O. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions, ESAIM Control Optim. Calc. Var., 17 (2011), 1101–1132. https://doi.org/10.1051/cocv/2010040 doi: 10.1051/cocv/2010040
    [17] S. W. Hansen, R. Rajaram, Simultaneous boundary control of a Rao-Nakra sandwich beam, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 3146–3151. https://doi.org/10.1109/CDC.2005.1582645
    [18] S. W. Hansen, R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Conf. Publ., 2005 (2005), 365–375.
    [19] R. Rajaram, Exact boundary controllability result for a Rao-Nakra sandwich beam, Syst. Control Lett., 56 (2007), 558–567. https://doi.org/10.1016/j.sysconle.2007.03.007 doi: 10.1016/j.sysconle.2007.03.007
    [20] C. A. Raposo, Rao-Nakra model with internal damping and time delay, Math. Morav., 25 (2021), 53–67. https://doi.org/10.5937/MatMor2102053R doi: 10.5937/MatMor2102053R
    [21] M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite waves peeds, Arch. Rational Mech. Anal., 31 (1968), 113–126. https://doi.org/10.1007/BF00281373 doi: 10.1007/BF00281373
    [22] F. Dell'Oro, V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Differ. Equ., 257 (2014), 523–548. https://doi.org/10.1016/j.jde.2014.04.009 doi: 10.1016/j.jde.2014.04.009
    [23] A. Fareh, Exponential stability of a Timoshenko type thermoelastic system with Gurtin-Pipkin thermal law and frictional damping, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71 (2022), 95–115. https://doi.org/10.31801/cfsuasmas.847038 doi: 10.31801/cfsuasmas.847038
    [24] W. J. Liu, W. F. Zhao, On the stability of a laminated beam with structural damping and Gurti-Pipkin thermal law, Nonlinear Anal. Model. Control, 26 (2021), 396–418. https://doi.org/10.15388/namc.2021.26.23051 doi: 10.15388/namc.2021.26.23051
    [25] T. A. Apalara, O. B. Almutairi, Well-posedness and exponential stability of swelling porous with Gurtin-Pipkin thermoelasticity, Mathematics, 10 (2022), 1–17. https://doi.org/10.3390/math10234498 doi: 10.3390/math10234498
    [26] M. Khader, B. Said-Houari, On the decay rate of solutions of the Bresse system with Gurtin-Pipkin thermal law, Asymptot. Anal., 103 (2017), 1–32. https://doi.org/10.3233/ASY-171417 doi: 10.3233/ASY-171417
    [27] D. Hanni, B. W. Feng, K. Zennir, Stability of Timoshenko system coupled with thermal law of Gurtin-Pipkin affecting on shear force, Appl. Anal., 101 (2022), 5171–5192. https://doi.org/10.1080/00036811.2021.1883591 doi: 10.1080/00036811.2021.1883591
    [28] F. Dell'Oro, On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Differ. Equ., 281 (2021), 148–198. https://doi.org/10.1016/j.jde.2021.02.009 doi: 10.1016/j.jde.2021.02.009
    [29] B. D. Coleman, M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199–208. https://doi.org/10.1007/BF01596912 doi: 10.1007/BF01596912
    [30] C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differ. Equ., 7 (1970), 554–569. https://doi.org/10.1016/0022-0396(70)90101-4 doi: 10.1016/0022-0396(70)90101-4
    [31] A. Pazzy, Semigroups of linear operators and application to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(964) PDF downloads(88) Cited by(3)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog