Research article

Long-time behavior for a nonlinear Timoshenko system: Thermal damping versus weak damping of variable-exponents type

  • Received: 13 September 2023 Revised: 26 October 2023 Accepted: 26 October 2023 Published: 01 November 2023
  • MSC : 35L20, 45K05, 74F05, 93D23

  • In this work, we consider a nonlinear thermoelastic Timoshenko system with a time-dependent coefficient where the heat conduction is given by Coleman-Gurtin [1]. Consequently, the Fourier and Gurtin-Pipkin laws are special cases. We prove that the system is exponentially and polynomially stable. The equality of the wave speeds is not imposed unless the system is not fully damped by the thermoelasticity effect. In other words, the thermoelasticity is only coupled to the first equation in the system. By constructing a suitable Lyapunov functional, we establish exponential and polynomial decay rates for the system. We noticed that the decay sometimes depends on the behavior of the thermal kernel, the variable exponent, and the time-dependent coefficient. Our results extend and improve some earlier results in the literature especially the recent results by Fareh [2], Mustafa [3] and Al-Mahdi and Al-Gharabli [4].

    Citation: Adel M. Al-Mahdi. Long-time behavior for a nonlinear Timoshenko system: Thermal damping versus weak damping of variable-exponents type[J]. AIMS Mathematics, 2023, 8(12): 29577-29603. doi: 10.3934/math.20231515

    Related Papers:

  • In this work, we consider a nonlinear thermoelastic Timoshenko system with a time-dependent coefficient where the heat conduction is given by Coleman-Gurtin [1]. Consequently, the Fourier and Gurtin-Pipkin laws are special cases. We prove that the system is exponentially and polynomially stable. The equality of the wave speeds is not imposed unless the system is not fully damped by the thermoelasticity effect. In other words, the thermoelasticity is only coupled to the first equation in the system. By constructing a suitable Lyapunov functional, we establish exponential and polynomial decay rates for the system. We noticed that the decay sometimes depends on the behavior of the thermal kernel, the variable exponent, and the time-dependent coefficient. Our results extend and improve some earlier results in the literature especially the recent results by Fareh [2], Mustafa [3] and Al-Mahdi and Al-Gharabli [4].



    加载中


    [1] B. D. Coleman, M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, ZAMP, 18 (1967), 199–208. https://doi.org/10.1007/BF01596912 doi: 10.1007/BF01596912
    [2] A. FAREH, Exponential stability of a timoshenko type thermoelastic system with gurtin-pipkin thermal law and frictional damping, Commun. Fac. Sci. Univ., 71 (2022), 95–115, 2022. https://doi.org/10.31801/cfsuasmas.847038 doi: 10.31801/cfsuasmas.847038
    [3] M. I. Mustafa, Timoshenko beams with variable-exponent nonlinearity, Math. Method. Appl. Sci., 46 (2023), 10246–10259. https://doi.org/10.1002/mma.9116 doi: 10.1002/mma.9116
    [4] A. M. Al-Mahdi, M. M. Al-Gharabli, Energy decay estimates of a timoshenko system with two nonlinear variable exponent damping terms, Mathematics, 11 (2023), 538. https://doi.org/10.3390/math11030538 doi: 10.3390/math11030538
    [5] M. Grobbelaar-Van Dalsen, Strong stabilization of models incorporating the thermoelastic reissner-mindlin plate equations with second sound, Appl. Anal., 90 (2011), 1419–1449. https://doi.org/10.1080/00036811.2010.530259 doi: 10.1080/00036811.2010.530259
    [6] S. P. Timoshenko, LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41 (1921), 744–746. https://doi.org/10.1080/14786442108636264 doi: 10.1080/14786442108636264
    [7] A. Guesmia, S. A. Messaoudi, On the control of a viscoelastic damped Timoshenko-type system, Appl. Math. Comput., 206 (2008), 589–597. https://doi.org/10.1016/j.amc.2008.05.122 doi: 10.1016/j.amc.2008.05.122
    [8] S. A. Messaoudi, M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dynam. Syst. Appl., 18 (2009), 457.
    [9] S. A. Messaoudi, J. H. Hassan, General and optimal decay in a memory-type Timoshenko system, J. Integral Equ. Appl., 30 (2018), 117–145. https://doi.org/10.1216/JIE-2018-30-1-117 doi: 10.1216/JIE-2018-30-1-117
    [10] D. da S. A. Júnior, M. L. Santos, J. E. M. Rivera, Stability to 1-D thermoelastic Timoshenko beam acting on shear force, Z. Angew. Math. Phys., 65 (2014), 1233–1249. https://doi.org/10.1007/s00033-013-0387-0 doi: 10.1007/s00033-013-0387-0
    [11] M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka, J. H. Rodrigues, Uniform decay rates for the energy of timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 65 (2014), 1189–1206. https://doi.org/10.1007/s00033-013-0380-7 doi: 10.1007/s00033-013-0380-7
    [12] T. A. Apalara, S. A. Messaoudi, A. A. Keddi, On the decay rates of Timoshenko system with second sound, Math. Method. Appl. Sci., 39 (2016), 2671–2684. https://doi.org/10.1002/mma.3720 doi: 10.1002/mma.3720
    [13] M. A. Ayadi, A. Bchatnia, M. Hamouda, S. Messaoudi, General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal., 4 (2015), 263–284.
    [14] B. Feng, On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Discrete Cont. Dyn. A, 37 (2017), 4729–4751. https://doi.org/10.3934/dcds.2017203 doi: 10.3934/dcds.2017203
    [15] B. Feng, X. G. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606–625. https://doi.org/10.1080/00036811.2016.1148139 doi: 10.1080/00036811.2016.1148139
    [16] A. Guesmia, S. A. Messaoudi, A. Soufyane, Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems, Electron. J. Differ. Eq., 193 (2012), 1–45.
    [17] M. Kafini, S. A. Messaoudi, M. I. Mustafa, Energy decay result in a Timoshenko-type system of thermoelasticity of type Ⅲ with distributive delay, J. Math. Phys., 54 (2013), https://doi.org/101503.10.1063/1.4826102
    [18] A. Malacarne, J. E. M. Rivera, Lack of exponential stability to Timoshenko system with viscoelastic kelvin-voigt type, Z. Angew. Math. Phys., 67 (2016), 67. https://doi.org/10.1007/s00033-016-0664-9 doi: 10.1007/s00033-016-0664-9
    [19] X. Tian, Q. Zhang, Stability of a Timoshenko system with local kelvin-voigt damping, Z. Angew. Math. Phys., 68 (2017), 20. https://doi.org/10.1007/s00033-016-0765-5 doi: 10.1007/s00033-016-0765-5
    [20] A. M. Al-Mahdi, M. M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, New decay results for a viscoelastic-type timoshenko system with infinite memory, Z. Angew. Math. Phys., 72 (2021), 22. https://doi.org/10.1007/s00033-020-01446-x doi: 10.1007/s00033-020-01446-x
    [21] M. I. Othman, M. Fekry, M. Marin, Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating, Struct. Eng. Mech., 73 (2020), 621–629. https://doi.org/10.12989/sem.2020.73.6.621 doi: 10.12989/sem.2020.73.6.621
    [22] A. E. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Soc. London A, 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012
    [23] A. Green, P. Naghdi, On undamped heat waves in an elastic solid, J. Therm. Stresses, 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136
    [24] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. https://doi.org/10.1007/BF00044969 doi: 10.1007/BF00044969
    [25] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [26] M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113–126. https://doi.org/10.1007/BF00281373 doi: 10.1007/BF00281373
    [27] S. Baibeche, L. Bouzettouta, A. Guesmia, M. Abdelli, Well-posedness and exponential stability of swelling porous elastic soils with a second sound and distributed delay term, J. Math. Comput. Sci., 12 (2022), 82. https://doi.org/10.28919/jmcs/7106 doi: 10.28919/jmcs/7106
    [28] A. Keddi, S. A. Messaoudi, M. Alahyane, Well-posedness and stability results for a swelling porous-heat system of second sound, J. Therm. Stresses, 44 (2021), 1427–1440. https://doi.org/10.1080/01495739.2021.2003274 doi: 10.1080/01495739.2021.2003274
    [29] M. A. Murad, J. H. Cushman, Thermomechanical theories for swelling porous media with microstructure, Int. J. Eng. Sci., 38 (2000), 517–564. https://doi.org/10.1016/S0020-7225(99)00054-3 doi: 10.1016/S0020-7225(99)00054-3
    [30] M. Santos, D. A. Júnior, J. M. Rivera, The stability number of the timoshenko system with second sound, J. Differ. Equations, 253 (2012), 2715–2733. https://doi.org/10.1016/j.jde.2012.07.012 doi: 10.1016/j.jde.2012.07.012
    [31] L. H. Fatori, J. E. M. Rivera, Rates of decay to weak thermoelastic bresse system, IMA J. Appl. Math., 75 (2010), 881–904. https://doi.org/10.1093/imamat/hxq038 doi: 10.1093/imamat/hxq038
    [32] A. Fareh, Exponential stability of a porous thermoelastic system with gurtin-pipkin thermal law, RACSAM, 116 (2022), 6. https://doi.org/10.1007/s13398-021-01132-1 doi: 10.1007/s13398-021-01132-1
    [33] M. O. Alves, E. H. Gomes Tavares, M. A. Jorge Silva, J. H. Rodrigues, On modeling and uniform stability of a partially dissipative viscoelastic timoshenko system, SIAM J. Math. Anal., 51 (2019), 4520–4543. https://doi.org/10.1137/18M1191774 doi: 10.1137/18M1191774
    [34] J. E. M. Rivera, R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248–278. https://doi.org/10.1016/S0022-247X(02)00436-5 doi: 10.1016/S0022-247X(02)00436-5
    [35] M. Alves, M. Jorge Silva, T. F. Ma, J. Muñoz Rivera, Invariance of decay rate with respect to boundary conditions in thermoelastic timoshenko systems, Z. Angew. Math. Phys., 67 (2016), 70. https://doi.org/10.1007/s00033-016-0662-y doi: 10.1007/s00033-016-0662-y
    [36] M. Alves, M. Jorge Silva, T. F. Ma, J. Muñoz Rivera, Non-homogeneous thermoelastic timoshenko systems, Bull. Braz. Math. Soc. New Series, 48 (2017), 461–484. https://doi.org/10.1007/s00574-017-0030-3 doi: 10.1007/s00574-017-0030-3
    [37] H. D. Fernández Sare, R. Racke, On the stability of damped timoshenko systems: Cattaneo versus fourier law, Arch. Rational Mech. Anal., 194 (2009), 221–251. https://doi.org/10.1007/s00205-009-0220-2 doi: 10.1007/s00205-009-0220-2
    [38] F. Dell'Oro, V. Pata, On the stability of timoshenko systems with gurtin-pipkin thermal law, J. Differ. Equations, 257 (2014), 523–548. https://doi.org/10.1016/j.jde.2014.04.009 doi: 10.1016/j.jde.2014.04.009
    [39] D. Hanni, B. Feng, K. Zennir, Stability of timoshenko system coupled with thermal law of gurtin-pipkin affecting on shear force, Appl. Anal., 101 (2022), 5171–5192. https://doi.org/10.1080/00036811.2021.1883591 doi: 10.1080/00036811.2021.1883591
    [40] G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
    [41] Y. Xue, J. Han, Z. Tu, X. Chen, Stability analysis and design of cooperative control for linear delta operator system, AIMS Math., 8 (2023), 12671–12693. https://doi.org/10.3934/math.2023637 doi: 10.3934/math.2023637
    [42] C. Wang, Y. Song, F. Zhang, Y. Zhao, Exponential stability of a class of neutral inertial neural networks with multi-proportional delays and leakage delays, Mathematics, 11 (2023), 12. https://doi.org/10.3390/math11122596 doi: 10.3390/math11122596
    [43] S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457–1467. https://doi.org/10.1016/j.jmaa.2007.11.048 doi: 10.1016/j.jmaa.2007.11.048
    [44] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. An., 37 (1970), 297–308. https://doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609
    [45] W. J. Hrusa, Global existence and asymptotic stability for a semilinear hyperbolic volterra equation with large initial data, SIAM J. Math. Anal., 16 (1985), 110–134. https://doi.org/10.1137/0516007 doi: 10.1137/0516007
    [46] X. Han, M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Method. Appl. Sci., 32 (2009), 346–358. https://doi.org/10.1002/mma.1041 doi: 10.1002/mma.1041
    [47] W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys., 50 (2009), 11. https://doi.org/10.1063/1.3254323 doi: 10.1063/1.3254323
    [48] I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integral Equ., 6 (1993), 507–533. https://doi.org/10.57262/die/1370378427 doi: 10.57262/die/1370378427
    [49] M. I. Mustafa, S. A. Messaoudi, General stability result for viscoelastic wave equations, J. Math. Phys., 53 (2012), 5. https://doi.org/10.1063/1.4711830 doi: 10.1063/1.4711830
    [50] M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka, C. M. Webler, Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density, Adv. Nonlinear Anal., 6 (2017), 121–145. https://doi.org/10.1515/anona-2016-0027 doi: 10.1515/anona-2016-0027
    [51] F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., 51 (2005), 61–105. https://doi.org/10.1007/s00245 doi: 10.1007/s00245
    [52] A. M. Al-Mahdi, M. Kafini, J. H. Hassan, M. Alahyane, Well-posedness, theoretical and numerical stability results of a memory-type porous thermoelastic system, Z. Angew. Math. Phys., 73 (2022), 94. https://doi.org/10.1007/s00033-022-01733-9 doi: 10.1007/s00033-022-01733-9
    [53] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874–882. https://doi.org/10.1016/j.camwa.2008.01.017 doi: 10.1016/j.camwa.2008.01.017
    [54] S. Lian, W. Gao, C. Cao, H. Yuan, Study of the solutions to a model porous medium equation with variable exponent of nonlinearity, J. Math. Anal. Appl., 342 (2008), 27–38. https://doi.org/10.1016/j.jmaa.2007.11.046 doi: 10.1016/j.jmaa.2007.11.046
    [55] S. Antontsev, S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Handbook of differential equations: Stationary Partial Differential Equations, 3 (2006), 1–100. https://doi.org/10.1016/S1874-5733(06)80005-7 doi: 10.1016/S1874-5733(06)80005-7
    [56] J. H. Hassan, S. A. Messaoudi, M. Zahri, Existence and new general decay results for a viscoelastic timoshenko system, Z. Anal. Anwend., 39 (2020), 185–222. https://doi.org/10.4171/ZAA/1657 doi: 10.4171/ZAA/1657
    [57] C. D. Enyi, B. Feng, Stability result for a new viscoelastic-thermoelastic timoshenko system, Bull. Malays. Math. Sci. Soc., 44 (2021), 1837–1866. https://doi.org/10.1007/s40840-020-01035-1 doi: 10.1007/s40840-020-01035-1
    [58] C. D. Enyi, S. E. Mukiawa, T. A. A. Apalara, Stabilization of a new memory-type thermoelastic timoshenko system, Appl. Anal., 102 (2023), 2271–2292. https://doi.org/10.1080/00036811.2022.2027375 doi: 10.1080/00036811.2022.2027375
    [59] M. M. Al-Gharabli, A. M. Al-Mahdi, Existence and stability results of a plate equation with nonlinear damping and source term, Electron. Res. Arch., 30 (2022), 4038–4065. https://doi.org/10.3934/era.2022205 doi: 10.3934/era.2022205
    [60] S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, M. A. Al-Osta, A coupled system of laplacian and bi-laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior, AIMS Math., 8 (2023), 7933–7966. https://doi.org/10.3934/math.2023400 doi: 10.3934/math.2023400
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(889) PDF downloads(60) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog