We study the invariance properties of the fractional time version of the nonlinear class of equations $ u_{t}^{\alpha}-g(u)\; u_{x}-f(u)\; u_{xxx} = 0 $, where $ 0 < \alpha < 1 $ using some recently developed symmetry-based techniques. The equations reduce to ordinary fractional Airy type, Korteweg-de Vries (KdV) and modified KdV equations through the change of variables provided by the symmetries. Furthermore, we utilize the symmetries to construct conservation laws for the fractional partial differential equations.
Citation: Miguel Vivas-Cortez, Yasir Masood, Absar Ul Haq, Imran Abbas Baloch, Abdul Hamid Kara, F. D. Zaman. Symmetry analysis and conservation laws of time fractional Airy type and other KdV type equations[J]. AIMS Mathematics, 2023, 8(12): 29569-29576. doi: 10.3934/math.20231514
We study the invariance properties of the fractional time version of the nonlinear class of equations $ u_{t}^{\alpha}-g(u)\; u_{x}-f(u)\; u_{xxx} = 0 $, where $ 0 < \alpha < 1 $ using some recently developed symmetry-based techniques. The equations reduce to ordinary fractional Airy type, Korteweg-de Vries (KdV) and modified KdV equations through the change of variables provided by the symmetries. Furthermore, we utilize the symmetries to construct conservation laws for the fractional partial differential equations.
[1] | S. A. El-Wakil, E. M. Abulwafa, M. A. Zahran, A. A. Mahmoud, Time-fractional KdV equation: formulation and solutions using variational methods, Nonlinear Dyn., 65 (2011), 55–63. https://doi.org/10.1007/s11071-010-9873-5 doi: 10.1007/s11071-010-9873-5 |
[2] | R. K. Gazizov, A. A. Kasatkin, S. Y. Lukaschuk, Symmetry properties of fractional diffusion equations, Phys. Scr., 2009 (2009), 014016. https://doi.org/10.1088/0031-8949/2009/T136/014016 doi: 10.1088/0031-8949/2009/T136/014016 |
[3] | D. M. Gusu, D. Wagi, G. Gemechu, D. Gemechu, Fractional order Airy's type differential equations of its model using RRDTM, Math. Probl. Eng., 2021 (2021), 1–21. https://doi.org/10.1155/2021/3719206 doi: 10.1155/2021/3719206 |
[4] | Q. Hussain, F. D. Zaman, A. H. Kara, Invariant analysis and conservation laws of time fractional Schrödinger equations, Optik, 206 (2020), 164356. https://doi.org/10.1016/j.ijleo.2020.164356 doi: 10.1016/j.ijleo.2020.164356 |
[5] | Q. Hussain, F. D. Zaman, A. H. Bokhari, A. H. Kara, On a study of symmetries and conservation laws of a class of time factional Schrödinger equations with nonlocal nonlinearities, Optik, 224 (2020), 165619. https://doi.org/10.1016/j.ijleo.2020.165619 doi: 10.1016/j.ijleo.2020.165619 |
[6] | N. H. Ibragimov, A. H. Kara, F. M. Mahomed, Lie-Bäcklund and noether symmetries with applications, Nonlinear Dyn., 15 (1998), 115–136. https://doi.org/10.1023/A:1008240112483 doi: 10.1023/A:1008240112483 |
[7] | S. Y. Lukaschuk, Conservation laws for time-fractional subdivision and diffusion-wave equations, Nonlinear Dyn., 80 (2015), 791–802. https://doi.org/10.1007/s11071-015-1906-7 doi: 10.1007/s11071-015-1906-7 |
[8] | S. Lou, Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations, J. Math. Phys., 35 (1994), 2390–2396. https://doi.org/10.1063/1.530509 doi: 10.1063/1.530509 |
[9] | K. Singla, R. K. Gupta, On invariant analysis of some time fractional nonlinear system of partial differential equations, J. Math. Phys., 57 (2016), 101504. https://doi.org/10.1063/1.4964937 doi: 10.1063/1.4964937 |
[10] | M. Wadati, The modified Korteg-de Vries equation, J. Phys. Soc. Jpn., 34 (1973), 1289–1296. https://doi.org/10.1143/JPSJ.34.1289 doi: 10.1143/JPSJ.34.1289 |
[11] | D. J. Zhang, S. L. Zhao, Y. Y. Sun, J. Zhou, Solutions to the modified Korteweg-de Vries equation, Rev. Math. Phys., 26 (2014), 1430006. https://doi.org/10.1142/S0129055X14300064 doi: 10.1142/S0129055X14300064 |