An improved adaptive Type-Ⅱ progressive censoring scheme was recently introduced to ensure that the examination duration will not surpass a specified threshold span. Employing this plan, this paper aimed to investigate statistical inference using Weibull constant-stress accelerated life tests. Two classical setups, namely maximum likelihood and maximum product of spacings, were explored to estimate the scale, shape, and reliability index under normal use conditions as well as their asymptotic confidence intervals. Through the same suggested classical setups, the Bayesian estimation methodology via the Markov chain Monte Carlo technique based on the squared error loss was considered to acquire the point and credible estimates. To compare the efficiency of the various offered approaches, a simulation study was carried out with varied sample sizes and censoring designs. The simulation findings show that the Bayesian approach via the likelihood function provides better estimates when compared with other methods. Finally, the utility of the proposed techniques was illustrated by analyzing two real data sets indicating the failure times of a white organic light-emitting diode and a pump motor.
Citation: Mazen Nassar, Refah Alotaibi, Ahmed Elshahhat. Reliability analysis at usual operating settings for Weibull Constant-stress model with improved adaptive Type-Ⅱ progressively censored samples[J]. AIMS Mathematics, 2024, 9(7): 16931-16965. doi: 10.3934/math.2024823
[1] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[2] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[3] | Wenbing Sun, Rui Xu . Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals. AIMS Mathematics, 2021, 6(10): 10679-10695. doi: 10.3934/math.2021620 |
[4] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[7] | Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon . New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Mathematics, 2022, 7(8): 15497-15519. doi: 10.3934/math.2022849 |
[8] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[9] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[10] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
An improved adaptive Type-Ⅱ progressive censoring scheme was recently introduced to ensure that the examination duration will not surpass a specified threshold span. Employing this plan, this paper aimed to investigate statistical inference using Weibull constant-stress accelerated life tests. Two classical setups, namely maximum likelihood and maximum product of spacings, were explored to estimate the scale, shape, and reliability index under normal use conditions as well as their asymptotic confidence intervals. Through the same suggested classical setups, the Bayesian estimation methodology via the Markov chain Monte Carlo technique based on the squared error loss was considered to acquire the point and credible estimates. To compare the efficiency of the various offered approaches, a simulation study was carried out with varied sample sizes and censoring designs. The simulation findings show that the Bayesian approach via the likelihood function provides better estimates when compared with other methods. Finally, the utility of the proposed techniques was illustrated by analyzing two real data sets indicating the failure times of a white organic light-emitting diode and a pump motor.
In convex functions theory, Hermite-Hadamard inequality is very important which was discovered by C. Hermite and J. Hadamard independently (see, also [1], and [2,p.137])
F(π1+π22)≤1π2−π1π2∫π1F(ϰ)dϰ≤F(π1)+F(π2)2, | (1.1) |
whereF is a convex function. In the case of concave mappings, the above inequality is satisfied in reverse order.
Over the last twenty years, numerous studies have focused on obtaining trapezoid and midpoint type inequalities which give bounds for the right-hand side and left-hand side of the inequality (1.1), respectively. For example, the authors first obtained trapezoid and midpoint type inequalities for convex functions in [3] and in [4], respectively. In [5], Sarikaya et al. obtained the inequalities (1.1) for Riemann-Liouville fractional integrals and the authors also proved some corresponding trapezoid type inequalities for fractional integrals. Iqbal et al. presented some fractional midpoint type inequalities for convex functions in [6]. Sarikaya and Ertuğral [7] introduced the notions of generalized fractional integrals and proved some Hermite-Hadamard type inequalities for convex functions. In [8], Budak et al. used the generalized fractional integrals to prove Hermite-Hadamard type inequalities for twice differentiable convex functions. After that, the authors used generalized fractional integrals and proved the different variants of integral inequalities in [9,10,11,12,13,14].
On the other hand, İşcan [15] defined the following class of functions called harmonically convex functions:
If the mapping F:I⊂R∖{0}→R satisfies the inequality
F(1σϰ+1−σy)≤σF(ϰ)+(1−σ)F(y), |
for all ϰ,y∈I and σ∈[0,1], then F is called harmonically convex function. In the case of harmonically concave mappings, the above inequality is satisfied in reverse order.
It is worth noting that the harmonic feature has been important in a variety of disciplines in pure and applied sciences. The authors explore the significance of the harmonic mean in Asian stock company [16]. Harmonic methods are used in electric circuit theory, which is interesting. The overall resistance of a set of parallel resistors is just half of the entire resistors' harmonic mean. If r1 and r2 are the resistances of two parallel resistors, the total resistance may be calculated using the following formula:
rσ=r1r2r1+r2=12H(r1,r2), |
which is the half of the harmonic mean.
The harmonic mean, according to Noor [17], is also important in the creation of parallel algorithms for solving nonlinear problems. Several researchers have proposed iterative approaches for solving linear and nonlinear systems of equations using harmonic means and harmonically convex functions.
Several research articles have recently been published on various generalizations of integral inequalities using various approaches. For example, İşcan established some new Hermite-Hadamard type inequalities for harmonically convex functions and trapezoid type inequalities for this class of functions in [15]. In [18], İ şcan and Wu established Hermite-Hadamard type inequalities for harmonically convex functions via Riemann-Liouville fractional integrals. They also proved some fractional trapezoid type inequalities for mapping whose derivatives in absolute value are harmonically convex. İşcan proved Ostrowski type integral inequalities for harmonically s-convex functions in [19] and in [20], Chen gave an extension of fractional Hermite-Hadamard type inequalities for harmonically convex functions. Kunt et al. [21] and Set et al. [22] used the Riemann-Liouville fractional integrals and proved Hermite-Hadamard type inequalities for harmonically convex functions. In [23], Șanlı proved several fractional midpoint type inequalities utilizing differentiable convex functions. The authors used the generalized fractional integrals and proved Hermite-Hadamard type inequalities for harmonically convex functions in [24,25]. Mohsen et al. [26] used the h- harmonically convexity to prove some new Ostrowski type inequalities and in [27], Akhtar et al. proved a new variant of Ostrowski inequalities for harmonically convex functions. In the literature there are several papers on the inequalities for harmonically convex functions. For some recent developments in integral inequalities and harmonically convexity, one can consult [28,29,30].
Inspired by the ongoing studies, we use the generalized fractional integrals to develop some new Ostrowski type inequalities for differentiable harmonically convex functions. We also show that the newly developed inequalities are extensions of some previously known inequalities.
The following is the structure of this paper: Section 2 provides a brief overview of the fractional calculus as well as other related studies in this field. In Section 3, we establish Ostrowski type inequalities for differentiable functions. The relationship between the findings reported here and similar findings in the literature are also taken into account. We discuss the special cases of newly established inequalities in Section 4 and obtain several new Ostrowski type inequalities. We give some applications to special means of real numbers in Section 5. Section 6 concludes with some recommendations for future research.
In this section, we recall some basic concepts of fractional integrals and related integral inequalities.
Definition 2.1. [7] The left and right-sided generalized fractional integrals given as follows:
π1+IφF(ϰ)=ϰ∫π1φ(ϰ−σ)ϰ−σF(σ)dσ, ϰ>π1, | (2.1) |
π2−IφF(ϰ)=π2∫ϰφ(σ−ϰ)σ−ϰF(σ)dσ, ϰ<π2, | (2.2) |
where the function φ:[0,∞)→[0,∞) satisfies ∫10φ(σ)σdσ<∞. For the details about the genrarlized fractional integrals, one can consult [7].
The most important feature of the generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc. Few important special cases of the integral operators (2.1) and (2.2) are mentioned below.
i) Taking φ(σ)=σ, the operators (2.1) and (2.2) reduces to the classical Riemann integrals as follows:
Iπ+1F(ϰ)=∫ϰπ1F(σ)dσ,ϰ>π1, |
Iπ−2F(ϰ)=∫π2ϰF(σ)dσ, ϰ<π2. |
ii) Taking φ(σ)=σαΓ(α), the operators (2.1) and (2.2) reduces to the well-known Riemann–Liouville fractional integrals as follows:
Jαπ+1F(ϰ)=1Γ(α)∫ϰπ1(ϰ−σ)α−1F(σ)dσ, ϰ>π1, |
Jαπ−2F(ϰ)=1Γ(α)∫π2ϰ(σ−ϰ)α−1F(σ)dσ, ϰ<π2. |
iii) Taking φ(σ)=σαkkΓk(α), the operators (2.1) and (2.2) reduces to the well-known k–Riemann–Liouville fractional integrals as follows:
Jα,kπ1+F(ϰ)=1kΓk(α)∫ϰπ1(ϰ−σ)αk−1F(σ)dσ, ϰ>π1, |
Jα,kπ2−F(ϰ)=1kΓk(α)∫π2ϰ(σ−ϰ)αk−1F(σ)dσ, ϰ<π2, |
where
Γk(α)=∫∞0σα−1e−σkkdσ, R(α)>0 |
and
Γk(α)=kαk−1Γ(αk), R(α)>0;k>0. |
Recently, Zhao et al. used the generalized fractional integrals and proved the following Hermite-Hadamard type inequalities.
Theorem 2.2. [25] For any harmonically convex mapping, the following inequalityholds:
F(2π1π2π1+π2)≤12Φ(1){Jα1π1−(F∘g)(1π2)+Jα1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2, | (2.3) |
where g(ϰ)=1ϰ and Φ(σ)=∫σ0φ(π2−π1π1π2s)sds<+∞.
Remark 2.3. It is obvious that if we set φ(σ)=σ in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality (see, [15]):
F(2π1π2π1+π2)≤π1π2π2−π1∫π2π1F(ϰ)dϰ≤F(π1)+F(π2)2. |
Remark 2.4. It is obvious that if we set φ(σ)=σαΓ(α) in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals (see, [18]):
F(2π1π2π1+π2)≤Γ(α+1)2(π1π2π2−π1)α{Jα1π1−(F∘g)(1π2)+Jα1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2. |
Remark 2.5. It is obvious that if we set φ(σ)=σαkkΓk(α) in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality for k-Riemann Liouville fractional integrals (see, [25]):
F(2π1π2π1+π2)≤kΓk(α+k)2(π1π2π2−π1)αk{Jα,k1π1−(F∘g)(1π2)+Jα,k1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2. |
In this section, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions via the generalized fractional integrals. For brevity, we give the following special functions:
(1) The Beta function:
β(ϰ,y)=Γ(ϰ)Γ(y)Γ(ϰ+y)=∫10σϰ−1(1−σ)y−1dσ, ϰ,y>0. |
(2) The hypergeometric function:
2F1(π1,π2;c;z)=1β(π2,c−π2)∫10σπ2−1(1−σ)c−π2−1(1−zσ)−αdσ, c>π2>0, |z|<1. |
Lemma 3.1. Let F:I=[π1,π2]⊆(0,+∞)→R be a differentiable function on I∘ such that F′∈L([π1,π2]). Then, the following generalized fractional integrals identity holds for all ϰ∈(π1,π2):
π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)], | (3.1) |
where the mappings Δ and Λ are defined as:
Δ(σ)=∫σ0φ(ϰ−π1π1ϰs)sds<+∞, |
and
Λ(σ)=∫σ0φ(π2−ϰπ2ϰs)sds<+∞. |
Proof. Consider
π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=I1−I2. | (3.2) |
From fundamentals of integrations, we have
I1=π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ=∫10Δ(σ)dF(π1ϰσπ1+(1−σ)ϰ)dσ=Δ(1)F(ϰ)−∫10φ((ϰ−π1)π1ϰσ)σF(π1ϰσπ1+(1−σ)ϰ)dσ=Δ(1)F(ϰ)−1ϰ+Iφ(F∘g)(1π1). |
Similarly, we have
I2=ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=−Λ(1)F(ϰ)+1ϰ−Iφ(F∘g)(1π2). |
Thus, we obtain the required identity (3.1) by using the calculated values of I1 and I2 in (3.2).
Remark 3.2. If we set φ(σ)=σ in Lemma 3.1, then we obtain the following equality:
π1π2π2−π1{(ϰ−π1)2∫10σ(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)2∫10σ(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ}=F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du. |
This is proved by İşcan in [19,Lemma 2.1].
Remark 3.3. In Lemma 3.1, if we set φ(σ)=σαΓ(α), then we have the following equality for Riemann-Liouville fractional integrals:
(ϰ−π1)α+1(π1ϰ)α−1∫10σα(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)α+1(ϰπ2)α−1∫10σα(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)−Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]. |
This is proved by İşcan in [31].
Corollary 3.4. In Lemma 3.1, if we set φ(σ)=σαkkΓ(α), then we have thefollowing new equality for k-Riemann-Liouville fractional integrals:
(ϰ−π1)α+kk(π1ϰ)α−kk∫10σαk(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)α+kk(ϰπ2)α−kk∫10σαk(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)−Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]. |
Theorem 3.5. We assume that the conditions of Lemma 3.1 are valid. If |F′|q is harmonicallyconvex on [π1,π2] for some q≥1, then the followinginequality holds for the generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)Θ1−1q1(Θ2|F′(ϰ)|q+Θ3|F′(π1)|q)1q+π2ϰ(π2−ϰ)Θ1−1q4(Θ5|F′(ϰ)|q+Θ6|F′(π2)|q)1q, |
where
Θ1=∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ2=∫10σΔ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ3=∫10(1−σ)Δ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ4=∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ,Θ5=∫10σΛ(σ)(σπ2+(1−σ)ϰ)2dσ, |
and
Θ6=∫10(1−σ)Λ(σ)(σπ2+(1−σ)ϰ)2dσ. |
Proof. Taking absolute in Lemma 3.1 and then applying the well known power mean inequality, we have
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|dσ+π2ϰ(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|dσ≤π1ϰ(ϰ−π1)(∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1−1q×(∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q+π2ϰ(π2−ϰ)(∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1−1q×(∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q. |
Now from harmonically convexity of |F′|q, we have
(∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1−1q(∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q≤Θ1−1q1(|F′(ϰ)|q∫10σΔ(σ)(σπ1+(1−σ)ϰ)2dσ+|F′(π1)|q∫10(1−σ)Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1q=Θ1−1q1(Θ2|F′(ϰ)|q+Θ3|F′(π1)|q)1q. |
and
(∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1−1q(∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q≤Θ1−1q4(|F′(ϰ)|q∫10σΛ(σ)(σπ2+(1−σ)ϰ)2dσ+|F′(π2)|q∫10(1−σ)Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1q=Θ1−1q4(Θ5|F′(ϰ)|q+Θ6|F′(π2)|q)1q. |
Thus, the proof is completed.
Remark 3.6. In Theorem 3.5, if we assume φ(σ)=σ, then we have the following Ostrowski type inequalities:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤π1π2π2−π1{χ1−1q1(π1,ϰ)(ϰ−π1)2(χ2(π1,ϰ,1,1)|F′(ϰ)|q+χ3(π1,ϰ,1,1)|F′(π1)|q)1q+χ1−1q1(π2,ϰ)(π2−ϰ)2(χ4(π2,ϰ,1,1)|F′(ϰ)|q+χ5(π2,ϰ,1,1)|F′(π2)|q)1q}, |
where
χ1(υ,ϰ)=1ϰ−ν[1υ−lnϰ−lnυϰ−υ],χ2(π1,ϰ,υ,μ)=β(μ+2,1)ϰ2υ2F1(2υ,μ+2;μ+3;1−π1ϰ),χ3(π1,ϰ,υ,μ)=β(μ+1,1)ϰ2υ2F1(2υ,μ+1;μ+3;1−π1ϰ),χ4(π2,ϰ,υ,μ)=β(1,μ+2)π2υ22F1(2υ,1;μ+3;1−ϰπ2),χ5(π2,ϰ,υ,μ)=β(2,μ+1)π2υ22F1(2υ,2;μ+3;1−ϰπ2). |
This is proved by İşcan in [19,Theorem 2.4 for s=1].
Corollary 3.7. In Theorem 3.5, if we set |F′(ϰ)|≤M, ϰ∈[π1,π2], then we obtain the following Ostrowski typeinequality for generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤M{π1ϰ(ϰ−π1)Θ1−1q1(Θ2+Θ3)1q+π2ϰ(π2−ϰ)Θ1−1q4(Θ5+Θ6)1q}. |
Remark 3.8. In Theorem 3.5, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤(ϰ−π1)α+1(π1ϰ)α−1Ω1−1q1(π1,ϰ,α)(Ω3(π1,ϰ,α)|F′(ϰ)|q+Ω4(π1,ϰ,α)|F′(π1)|q)1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1−1q2(π2,ϰ,α)(Ω5(π2,ϰ,α)|F′(ϰ)|q+Ω6(π2,ϰ,α)|F′(π2)|q)1q, |
where
Ω1(π1,ϰ,α)=ϰ−22F1(2,α+1;α+2;1−π1ϰ),Ω2(π2,ϰ,α)=π−222F1(2,1;α+2;1−ϰπ2)Ω3(π1,ϰ,α)=β(α+2,1)ϰ22F1(2,α+2;α+3;1−π1ϰ),Ω4(π1,ϰ,α)=Ω1(π1,ϰ,α)−Ω3(π1,ϰ,α),Ω5(π2,ϰ,α)=β(1,α+2)π222F1(2,1;α+3;1−ϰπ2),Ω6(π2,ϰ,α)=Ω2(π2,ϰ,α)−Ω5(π2,ϰ,α). |
This is proved by İşcan in [31].
Corollary 3.9. In Theorem 3.5, if we set φ(σ)=σαkkΓk(α), then we obtain the followingnew Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤(ϰ−π1)α+kk(π1ϰ)α−kkΩ1−1q1(π1,ϰ,αk)(Ω3(π1,ϰ,αk)|F′(ϰ)|q+Ω4(π1,ϰ,αk)|F′(π1)|q)1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1−1q2(π2,ϰ,αk)(Ω5(π2,ϰ,αk)|F′(ϰ)|q+Ω6(π2,ϰ,αk)|F′(π2)|q)1q, |
where
Ω1(π1,ϰ,αk)=ϰ−22F1(2,αk+1;αk+2;1−π1ϰ),Ω2(π2,ϰ,αk)=π−222F1(2,1;αk+2;1−ϰπ2)Ω3(π1,ϰ,αk)=β(αk+2,1)ϰ22F1(2,αk+2;αk+3;1−π1ϰ),Ω4(π1,ϰ,αk)=Ω1(π1,ϰ,αk)−Ω3(π1,ϰ,αk),Ω5(π2,ϰ,αk)=β(1,αk+2)π222F1(2,1;αk+3;1−ϰπ2),Ω6(π2,ϰ,αk)=Ω2(π2,ϰ,αk)−Ω5(π2,ϰ,αk). |
Theorem 3.10. We assume that the conditions of Lemma 3.1 are valid. If |F′|q is harmonicallyconvex on [π1,π2] for some q>1, then the followinginequality holds for the generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)Θ1p7(|F′(ϰ)|q+|F′(π1)|q2)1q+π2ϰ(π2−ϰ)Θ1p8(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where 1p+1q=1 and
Θ7=∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ,Θ8=∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ. |
Proof. From Lemma 3.1 and applying well-known Hölder's inequality, we have
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|dσ+π2ϰ(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|dσ≤π1ϰ(ϰ−π1)(∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q+π2ϰ(π2−ϰ)(∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q. |
Now from harmonically convexity of |F′|q, we have
(∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q≤Θ1p7(|F′(ϰ)|q∫10σdσ+|F′(π1)|q∫10(1−σ)dσ)1q=Θ1p7(|F′(ϰ)|q+|F′(π1)|q2)1q. |
and
(∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q≤Θ1p8(|F′(ϰ)|q∫10σdσ+|F′(π2)|q∫10(1−σ)dσ)1q=Θ1p8(|F′(ϰ)|q+|F′(π2)|q2)1q. |
Thus, the proof is completed.
Remark 3.11. In Theorem 3.10, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤π1π2π2−π1{(χ∗2(π1,ϰ,υ,μ))1p(ϰ−π1)2(|F′(ϰ)|q+|F′(π1)|q2)1q+(χ∗4(π2,ϰ,υ,μ))1p(π2−ϰ)2(|F′(ϰ)|q+|F′(π2)|q2)1q}, |
where
χ∗2(π1,ϰ,υ,μ)=β(μ+1,1)ϰ2υ2F1(2υ,μ+1;μ+2;1−π1ϰ),χ∗4(π2,ϰ,υ,μ)=β(1,μ+1)π2υ22F1(2υ,1;μ+2;1−ϰπ2). |
This is proved by İşcan in [19,Theorem 2.6 for s=1].
Corollary 3.12. In Theorem 3.5, if we set |F′(ϰ)|≤M, ϰ∈[π1,π2], then we obtain the following Ostrowski typeinequality for generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤M{π1ϰ(ϰ−π1)Θ1p7+π2ϰ(π2−ϰ)Θ1p8}. |
Remark 3.13. In Theorem 3.10, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequalities for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤(ϰ−π1)α+1(π1ϰ)α−1Ω1p7(π1,ϰ,α,p)(|F′(ϰ)|q+|F′(π1)|q2)1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1p7(π2,ϰ,α,p)(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where
Ω7(υ,ϰ,α,p)=ϰ−2αp+12F1(2p,αp+1;αp+2;1−υϰ). |
This is proved by İşcan in [31].
Corollary 3.14. In Theorem 3.5, if we set φ(σ)=σαkkΓk(α), then we obtain the followingnew Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤(ϰ−π1)α+kk(π1ϰ)α−kkΩ1p7(π1,ϰ,αk,p)(|F′(ϰ)|q+|F′(π1)|q2)1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1p7(π2,ϰ,αk,p)(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where
Ω7(υ,ϰ,αk,p)=kϰ−2αp+k2F1(2p,αp+kk;αp+2kk;1−υϰ). |
In this section, we discuss more special cases of the results proved in the last section.
Remark 4.1. In Corollary 3.7, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤Mπ1π2π2−π1{χ1−1q1(π1,ϰ)(ϰ−π1)2(χ2(π1,ϰ,1,1)+χ3(π1,ϰ,1,1))1q+χ1−1q1(π2,ϰ)(π2−ϰ)2(χ4(π2,ϰ,1,1)+χ5(π2,ϰ,1,1))1q}. | (4.1) |
This is proved by İşcan in [19,Corollary 2.3 for s=1].
Remark 4.2. In Corollary 3.7, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤M[(ϰ−π1)α+1(π1ϰ)α−1Ω1−1q1(π1,ϰ,α)(Ω3(π1,ϰ,α)+Ω4(π1,ϰ,α))1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1−1q2(π2,ϰ,α)(Ω5(π2,ϰ,α)+Ω6(π2,ϰ,α))1q]. |
This is proved by İşcan in [31].
Remark 4.3. In Corollary 3.7, if we set φ(σ)=σαkkΓk(α), then we obtain the following new Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤M[(ϰ−π1)α+kk(π1ϰ)α−kkΩ1−1q1(π1,ϰ,αk)(Ω3(π1,ϰ,αk)+Ω4(π1,ϰ,αk))1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1−1q2(π2,ϰ,αk)(Ω5(π2,ϰ,αk)+Ω6(π2,ϰ,αk))1q]. |
Remark 4.4. In Corollary 3.12, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤Mπ1π2π2−π1{(χ∗2(π1,ϰ,υ,μ))1p(ϰ−π1)2+(χ∗4(π2,ϰ,υ,μ))1p(π2−ϰ)2}. | (4.2) |
This is proved by İşcan in [19,Corollary 2.5 for s=1].
Remark 4.5. In Corollary 3.12, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤M[(ϰ−π1)α+1(π1ϰ)α−1Ω1p7(π1,ϰ,α,p)+(π2−ϰ)α+1(π2ϰ)α−1Ω1p7(π2,ϰ,α,p)]. |
This is proved by İşcan in [31].
Remark 4.6. In Corollary 3.12, if we set φ(σ)=σαkkΓk(α), then we obtain the following new Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤M[(ϰ−π1)α+kk(π1ϰ)α−kkΩ1p7(π1,ϰ,αk,p)+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1p7(π2,ϰ,αk,p)]. |
Remark 4.7. If we set q=1 in Theorem 3.5 and Corollaries 3.7–3.14, then we obtain some new Ostrowski type inequlities for the harmonically convexity of |F′|. Moreover, for different choices of φ in the generalized fractional integrals, one can obtain several Ostrowski type inequalities via Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc.
For arbitrary positive numbers π1,π2(π1≠π2), we consider the means as follows:
(1) The arithmatic mean
A=A(π1,π2)=π1+π22. |
(2) The geometric mean
G=G(π1,π2)=√π1π2. |
(3) The harmonic means
H=H(π1,π2)=2π1π2π1+π2. |
(4) The logarithmic mean
L=L(π1,π2)=π2−π1lnπ2−lnπ1. |
(5) The generalize logarithmic mean
Lp=Lp(π1,π2)=[π2−π1(π2−π1)(p+1)]1p,p∈R∖{−1,0}. |
(6) The identric mean
I=I(π1,π2)={1e(π2π1)1π2−π1, if π1≠π2,π1, if π1=π2,π1,π2>0. |
These means are often employed in numerical approximations and other fields. However, the following straightforward relationship has been stated in the literature.
H≤G≤L≤I≤A. |
Proposition 5.1. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|A(π1,π2)−G2(π1,π2)L(π1,π2)|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰ leads to this conclusion.
Proposition 5.2. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|H(π1,π2)−G2(π1,π2)L(π1,π2)|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰ leads to this conclusion.
Proposition 5.3. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|Ap+2(π1,π2)−G2(π1,π2)Lpp(π1,π2)|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰp+2,p∈(−1,∞){0} leads to this conclusion.
Proposition 5.4. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|Hp+2(π1,π2)−G2(π1,π2)Lpp(π1,π2)|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰp+2, p∈(−1,∞){0} leads to this conclusion.
Proposition 5.5. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|A2(π1,π2)ln(A(π1,π2))−G2(π1,π2)ln(I(π1,π2))|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰ2lnϰ, leads to this conclusion.
Proposition 5.6. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|H2(π1,π2)ln(H(π1,π2))−G2(π1,π2)ln(I(π1,π2))|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰ2lnϰ leads to this conclusion.
In this paper, we have proved several new Ostrowski type inequalities for differentiable harmonically convex functions via the generalized fractional integrals. Moreover, we have proved that the established inequalities are the extensions of some existing inequalities in the literature. It is an interesting and new problem that the upcoming researchers can offer similar inequalities for different type of harmonically and co-ordinated harmonically convexity.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract No. KMUTNB-63-KNOW-22.
The authors declare no conflict of interest.
[1] |
N. Balakrishnan, D. Han, Exact inference for a simple step-stress model with competing risks for failure from exponential distribution under Type-Ⅱ censoring, J. Stat. Plan. Infer., 138 (2008), 4172–4186. https://doi.org/10.1016/j.jspi.2008.03.036 doi: 10.1016/j.jspi.2008.03.036
![]() |
[2] | W. B. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, Amsterdam: John Wiley & Sons, 2009. |
[3] |
M. Kateri, U. Kamps, Inference in step-stress models based on failure rates, Stat. Papers, 56 (2015), 639–660. https://doi.org/10.1007/s00362-014-0601-y doi: 10.1007/s00362-014-0601-y
![]() |
[4] |
M. M. El-Din, S. E. Abu-Youssef, N. S. Ali, A. M. Abd El-Raheem, Estimation in constant-stress accelerated life tests for extension of the exponential distribution under progressive censoring, Metron, 74 (2016), 253–273. https://doi.org/10.1007/s40300-016-0089-4 doi: 10.1007/s40300-016-0089-4
![]() |
[5] |
L. Wang, Estimation of constant-stress accelerated life test for Weibull distribution with nonconstant shape parameter, J. Comput. Appl. Math., 343 (2018), 539–555. https://doi.org/10.1016/j.cam.2018.05.012 doi: 10.1016/j.cam.2018.05.012
![]() |
[6] |
S. G. Nassr, N. M. Elharoun, Inference for exponentiated Weibull distribution under constant stress partially accelerated life tests with multiple censored, Commun. Stat. Appl. Meth., 26 (2019), 131–148. https://doi.org/10.29220/CSAM.2019.26.2.131 doi: 10.29220/CSAM.2019.26.2.131
![]() |
[7] |
M. Nassar, H. Okasha, M. Albassam, E-Bayesian estimation and associated properties of simple step–stress model for exponential distribution based on Type-Ⅱ censoring, Qual. Reliab. Eng. Int., 37 (2021), 997–1016. https://doi.org/10.1002/qre.2778 doi: 10.1002/qre.2778
![]() |
[8] |
M. Nassar, S. Dey, L. Wang, A. Elshahhat, Estimation of Lindley constant-stress model via product of spacing with Type-Ⅱ censored accelerated life data, Commun. Stat. Simul. Comput., 53 (2024), 288–314. https://doi.org/10.1080/03610918.2021.2018460 doi: 10.1080/03610918.2021.2018460
![]() |
[9] |
S. Dey, M. Nassar, Classical methods of estimation on constant stress accelerated life tests under exponentiated Lindley distribution, J. Appl. Stat., 47 (2020), 975–996. https://doi.org/10.1080/02664763.2019.1661361 doi: 10.1080/02664763.2019.1661361
![]() |
[10] |
X. Feng, J. Tang, Q. Tan, Z. Yin, Reliability model for dual constant-stress accelerated life test with Weibull distribution under Type-Ⅰ censoring scheme, Commun. Stat. Theory Meth., 51 (2022), 8579–8597. https://doi.org/10.1080/03610926.2021.1900868 doi: 10.1080/03610926.2021.1900868
![]() |
[11] |
N. Balakrishnan, E. Castilla, M. H. Ling, Optimal designs of constant-stress accelerated life-tests for one-shot devices with model misspecification analysis, Qual. Reliab. Eng. Int., 38 (2022), 989–1012. https://doi.org/10.1002/qre.3031 doi: 10.1002/qre.3031
![]() |
[12] |
R. Alotaibi, M. Nassar, A. Elshahhat, Reliability estimation under normal operating conditions for progressively Type-Ⅱ XLindley censored data, Axioms, 12 (2023), 352. https://doi.org/10.3390/axioms12040352 doi: 10.3390/axioms12040352
![]() |
[13] |
D. Kumar, M. Nassar, S. Dey, F. M. A. Alam, On estimation procedures of constant stress accelerated life test for generalized inverse Lindley distribution, Qual. Reliab. Eng. Int., 38 (2022), 211–228. https://doi.org/10.1002/qre.2971 doi: 10.1002/qre.2971
![]() |
[14] |
M. Y. Manal, R. Alsultan, S. G. Nassr, Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-Ⅱ progressive censoring data, Math. Biosci. Eng., 20 (2023), 1674–1694. https://doi.org/10.3934/mbe.2023076 doi: 10.3934/mbe.2023076
![]() |
[15] |
W. Wu, B. X. Wang, J. Chen, J. Miao, Q. Gun, Interval estimation of the two-parameter exponential constant stress accelerated life test model under Type-Ⅱ censoring, Qual. Technol. Quant. Manag., 20 (2023), 751–762. https://doi.org/10.1080/16843703.2022.2147688 doi: 10.1080/16843703.2022.2147688
![]() |
[16] |
D. Kundu, A. Joarder, Analysis of Type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. https://doi.org/10.1016/j.csda.2005.05.002 doi: 10.1016/j.csda.2005.05.002
![]() |
[17] |
H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-Ⅱ progressive censoring scheme, Naval Res. Logist., 56 (2009), 687–698. https://doi.org/10.1002/nav.20371 doi: 10.1002/nav.20371
![]() |
[18] |
A. A. Ismail, Inference for a step-stress partially accelerated life test model with an adaptive Type-Ⅱ progressively hybrid censored data from Weibull distribution, J. Comput. Appl. Math., 260 (2014), 533–542. https://doi.org/10.1016/j.cam.2013.10.014 doi: 10.1016/j.cam.2013.10.014
![]() |
[19] |
M. M. A. Sobhi, A. A. Soliman, Estimation for the exponentiated Weibull model with adaptive Type-Ⅱ progressive censored schemes, Appl. Mathe. Model., 40 (2016), 1180–1192. https://doi.org/10.1016/j.apm.2015.06.022 doi: 10.1016/j.apm.2015.06.022
![]() |
[20] |
M. Nassar, O. E. Abo-Kasem, Estimation of the inverse Weibull parameters under adaptive type-Ⅱ progressive hybrid censoring scheme, J. Comput. Appl. Math., 315 (2017), 228–239. https://doi.org/10.1016/j.cam.2016.11.012 doi: 10.1016/j.cam.2016.11.012
![]() |
[21] |
M. Nassar, O. Abo-Kasem, C. Zhang, S. Dey, Analysis of Weibull distribution under adaptive type-Ⅱ progressive hybrid censoring scheme, J. Indian Soc. Probab. Stat., 19 (2018), 25–65. https://doi.org/10.1007/s41096-018-0032-5 doi: 10.1007/s41096-018-0032-5
![]() |
[22] |
A. Elshahhat, M. Nassar, Bayesian survival analysis for adaptive Type-Ⅱ progressive hybrid censored Hjorth data, Comput. Stat., 36 (2021), 1965–1990. https://doi.org/10.1007/s00180-021-01065-8 doi: 10.1007/s00180-021-01065-8
![]() |
[23] |
W. S. Abu El Azm, R. Aldallal, H. M. Aljohani, S. G. Nassr, Estimations of Competing Lifetime data from Inverse Weibull Distribution Under Adaptive progressively hybrid censored, Math. Biosci. Eng., 19 (2022), 6252–6276. https://doi.org/10.3934/mbe.2022292 doi: 10.3934/mbe.2022292
![]() |
[24] | S. G. Nassr, W. S. Abu El Azm, E. M. Almetwally, Statistical inference for the extended weibull distribution based on adaptive type-Ⅱ progressive hybrid censored competing risks data, Thailand Stat., 19 (2021), 547–564. |
[25] |
W. Yan, P. Li, Y. Yu, Statistical inference for the reliability of Burr-XⅡ distribution under improved adaptive Type-Ⅱ progressive censoring, Appl. Math. Model., 95 (2021), 38–52. https://doi.org/10.1016/j.apm.2021.01.050 doi: 10.1016/j.apm.2021.01.050
![]() |
[26] |
I. Elbatal, M. Nassar, A. Ben Ghorbal, L. S. G. Diad, A. Elshahhat, Reliability analysis and its applications for a newly improved Type-Ⅱ adaptive progressive Alpha power exponential censored sample, Symmetry, 15 (2023), 2137. https://doi.org/10.3390/sym15122137 doi: 10.3390/sym15122137
![]() |
[27] |
S. Dutta, S. Kayal, Inference of a competing risks model with partially observed failure causes under improved adaptive type-Ⅱ progressive censoring, Proc. Instit. Mech. Eng. Part O: J. Risk Reliab., 237 (2023), 765–780. https://doi.org/10.1177/1748006X221104555 doi: 10.1177/1748006X221104555
![]() |
[28] | A. Xu, B. Wang, D. Zhu, J. Pang, X. Lian, Bayesian reliability assessment of permanent magnet brake under small sample size, IEEE Transact. Reliab., 2024, 1–11. https://doi.org/10.1109/TR.2024.3381072 |
[29] |
W. Wang, Z. Cui, R. Chen, Y. Wang, X. Zhao, Regression analysis of clustered panel count data with additive mean models, Stat. Papers, 2023. https://doi.org/10.1007/s00362-023-01511-3 doi: 10.1007/s00362-023-01511-3
![]() |
[30] |
W. Wang, D. B. Kececioglu, Fitting the Weibull log-linear model to accelerated life-test data, IEEE Transact. Reliab., 49 (2000), 217–223. https://doi.org/10.1109/24.877341 doi: 10.1109/24.877341
![]() |
[31] |
S. Roy, Bayesian accelerated life test plans for series systems with Weibull component lifetimes, Appl. Math. Model., 62 (2018), 383–403. https://doi.org/10.1016/j.apm.2018.06.007 doi: 10.1016/j.apm.2018.06.007
![]() |
[32] |
W. Cui, Z. Yan, X. Peng, Statistical analysis for constant-stress accelerated life test with Weibull distribution under adaptive Type-Ⅱ hybrid censored data, IEEE Access, 7 (2019), 165336–165344. https://doi.org/10.1109/ACCESS.2019.2950699 doi: 10.1109/ACCESS.2019.2950699
![]() |
[33] |
A. A. Ismail, Statistical analysis of Type-Ⅰ progressively hybrid censored data under constant-stress life testing model, Phys. A: Stat. Mech. Appl., 520 (2019), 138–150. https://doi.org/10.1016/j.physa.2019.01.004 doi: 10.1016/j.physa.2019.01.004
![]() |
[34] |
B. X. Wang, K. Yu, Z. Sheng, New inference for constant-stress accelerated life tests with Weibull distribution and progressively type-Ⅱ censoring, IEEE Transact. Reliab., 63 (2014), 807–815. https://doi.org/10.1109/TR.2014.2313804 doi: 10.1109/TR.2014.2313804
![]() |
[35] |
A. J. Watkins, A. M. John, On constant stress accelerated life tests terminated by Type Ⅱ censoring at one of the stress levels, J. Stat. Plann. Infer., 138 (2008), 768–786. https://doi.org/10.1016/j.jspi.2007.02.013 doi: 10.1016/j.jspi.2007.02.013
![]() |
[36] | W. H. Greene, Econometric Analysis, 4 Eds, New York: Prentice-Hall, 2000. |
[37] | R. C. H. Cheng, N. A. K. Amin, Estimating parameters in cont.inuous univariate distributions with a shifted origin, J. Royal Stat. Soc.: Ser. B, 45 (1983), 394–403. |
[38] | B. Ranneby, The maximum spacing method. An estimation method related to the maximum likelihood method, Scand. J. Stat., 11 (1984), 93–112 |
[39] |
S. Basu, S. K. Singh, U. Singh, Estimation of inverse Lindley distribution using product of spacings function for hybrid censored data, Methodol. Comput. Appl. Probab., 21 (2019), 1377–1394. https://doi.org/10.1007/s11009-018-9676-6 doi: 10.1007/s11009-018-9676-6
![]() |
[40] |
G. Volovskiy, U. Kamps, Maximum product of spacings prediction of future record values, Metrika (2020), 853–868. https://doi.org/10.1007/s00184-020-00767-1 doi: 10.1007/s00184-020-00767-1
![]() |
[41] |
A. Chaturvedi, S. K. Singh, U. Singh, Maximum product spacings estimator for fuzzy data using inverse Lindley distribution, Austrian J. Stat., 52 (2023), 86–103. https://doi.org/10.17713/ajs.v52i2.1395 doi: 10.17713/ajs.v52i2.1395
![]() |
[42] |
R. C. H. Cheng, L. Traylor, Non-regular maximum likelihood problems, J. Royal Stat. Soc. Ser. B, 57 (1995), 3–24. https://doi.org/10.1111/j.2517-6161.1995.tb02013.x doi: 10.1111/j.2517-6161.1995.tb02013.x
![]() |
[43] |
K. Ghosh, S. R. Jammalamadaka, A general estimation method using spacings, J. Stat. Plann. Infer., 93 (2001), 71–82. https://doi.org/10.1016/S0378-3758(00)00160-9 doi: 10.1016/S0378-3758(00)00160-9
![]() |
[44] |
S. Anatolyev, G. Kosenok, An alternative to maximum likelihood based on spacings, Economet. Theory, 21 (2005), 472–476. https://doi.org/10.1017/S0266466605050255 doi: 10.1017/S0266466605050255
![]() |
[45] | M. Plummer, N. Best, K. Cowles, K. Vines, COOD: convergence diagnosis and output analysis for MCMC, R News, 6 (2006), 7–11. |
[46] |
A. Henningsen, O. Toomet, MaxLik: a package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. https://doi.org/10.1007/s00180-010-0217-1 doi: 10.1007/s00180-010-0217-1
![]() |
[47] |
J. M. Pavia, Testing goodness-of-fit with the kernel density estimator: GoFKernel, J. Stat. Software Code Snippet, 66 (2015), 1–27. https://doi.org/10.18637/jss.v066.c01 doi: 10.18637/jss.v066.c01
![]() |
[48] |
M. Nassar, A. Elshahhat, Statistical analysis of inverse Weibull constant-stress partially accelerated life tests with adaptive progressively type Ⅰ censored data, Mathematics, 11 (2023), 370. https://doi.org/10.3390/math11020370 doi: 10.3390/math11020370
![]() |
[49] | J. Zhang, G. Cheng, X. Chen, Y. Han, T. Zhou, Y. Qiu, Accelerated life test of white OLED based on lognormal distribution, Indian J. Pure Appl. Phys. (IJPAP), 52 (2015), 671–677. |
[50] |
C. T. Lin, Y. Y. Hsu, S. Y. Lee, N. Balakrishnan, Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with Type-Ⅰ hybrid censoring, J. Stat. Comput. Simul., 89 (2019), 720–749. https://doi.org/10.1080/00949655.2019.1571591 doi: 10.1080/00949655.2019.1571591
![]() |
1. | Muhammad Amer Latif, Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions, 2022, 1016-2526, 665, 10.52280/pujm.2022.541101 | |
2. | YONGFANG QI, GUOPING LI, FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501281 | |
3. | Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040 |