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Abstract: An improved adaptive Type-II progressive censoring scheme was recently introduced to
ensure that the examination duration will not surpass a specified threshold span. Employing this
plan, this paper aimed to investigate statistical inference using Weibull constant-stress accelerated life
tests. Two classical setups, namely maximum likelihood and maximum product of spacings, were
explored to estimate the scale, shape, and reliability index under normal use conditions as well as
their asymptotic confidence intervals. Through the same suggested classical setups, the Bayesian
estimation methodology via the Markov chain Monte Carlo technique based on the squared error loss
was considered to acquire the point and credible estimates. To compare the efficiency of the various
offered approaches, a simulation study was carried out with varied sample sizes and censoring designs.
The simulation findings show that the Bayesian approach via the likelihood function provides better
estimates when compared with other methods. Finally, the utility of the proposed techniques was
illustrated by analyzing two real data sets indicating the failure times of a white organic light-emitting
diode and a pump motor.
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Abbreviations.

Abbreviations Full name
ALTs Accelerated life tests
CSALTs Constant-stress accelerated life tests
PT2C Progressive Type-II censoring
APT2C Adaptive progressive Type-II censoring
IAPT2C Improved adaptive progressive Type-II censoring
MPS Maximum product of spacings
RF Reliability function
MCMC Markov chain Monte Carlo
ACIs Approximate confidence intervals
BCIs Bayes credible intervals
PDF Probability density function
CDF Cumulative distribution function
LF Likelihood function
MLEs Maximum likelihood estimates
AV-CM Asymptotic variance-covariance matrix
MPSEs Maximum product of spacings estimates
PS Product of spacings
SELF Squared error loss function
M-H Metropolis–Hastings
AvEs Average estimates
RMSEs Root mean squared-errors
MRABs Mean average absolute biases
MRABs Mean relative absolute biases
ACLs Average confidence lengths
CPs Coverage probabilities
BGR Brooks–Gelman–Rubin
OLED Organic light-emitting diode
SEs Standard–errors
LR Likelihood ratio
KS Kolmogorov-Smirnov

1. Introduction

Quick advancements in technology, drastic global competition, and growing client expectations
have all put massive pressure on manufacturers to deliver high-quality products. Clients anticipate
high-reliability products. Enhancing reliability is a significant part of the overall vision of improving
product quality. For modern products, there is a longer lifespan with higher reliability, which means
it is not beneficial to test products under normal-use circumstances, where the evaluation procedure
may be overly long and excessive. In this case, accelerated life tests (ALTs) have been presented to
gather failure information quickly within a reasonable testing time frame. In ALTs, items are subjected
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to higher-than-normal amounts of stress (for example, temperature or pressure) to lead to a quicker
failure. The data acquired from such ALTs is then examined to determine the life characteristics under
typical circumstances of operation. Employing the constant-stress ALTs (CSALTs), the test objects
are under continual severe stress until failure occurs or the test is finished. The mechanism of CSALTs
is explained in detail in the next section. It is vital to highlight that there are other types of ALTs,
such as step-stress ALTs. Many authors have considered ALTs in their studies; see, for example,
Balakrishnan and Han [1], Nelson [2], Kateri and Kamps [3], Mohie El-Din et al. [4], Wang [5], Nassr
and Elharoun [6], Nassar et al. [7, 8], Dey and Nassar [9], Feng et al. [10], Balakrishnan et al. [11],
Alotaibi et al. [12], Kumar et al. [13], Manal et al. [14], and Wu et al. [15].

In life testing and reliability analysis, collecting data from all tested units is unrealistic because of its
high cost and duration. Accordingly, the use of censoring schemes is naturally utilized in reliability and
lifetime investigations, where the experiment will end when a portion of the units fail. Type-I and Type-
II censoring strategies are the most commonly utilized plans in publications. Nevertheless, these plans
do not permit the experimenters to discard items from the experimentation at any moment until the
investigation is completed. To overpower this disadvantage, a progressive Type-II censoring (PT2C)
procedure is suggested, in which the experimenters can remove live units in various testing phases. The
lifespan of items is increasing due to technological advancements, and even when the PT2C scheme
is used, this results in increased test time frames. In certain cases, no failure occurs within the test
period. Therefore, Kundu and Joarder [16] suggested the progressive Type-I hybrid censoring strategy,
which is a combination of PT2C and hybrid censoring plans. The major weakness of this plan is that
the number of failures is arbitrary and occasionally low or zero, which delivers outcomes of statistical
deduction that may be inappropriate or inadequate. To improve this shortage, Ng et al. [17] introduced
an adaptive PT2C (APT2C) plan that adapts the test procedure according to the trial improvement to
achieve the desired pre-fixed number of failures. Because of the advantages of this scheme, numerous
researchers have explored the estimation problems of some lifetime models in the presence of APT2C
data, see, for example, Ismail [18], AL Sobhi [19], Nassar and Abo-Kasem [20], Nassar et al [21],
Elshahhat and Nassar [22], Abu El Azm et al [23], and Nassr et al [24], among others. Nevertheless,
as indicated by Ng et al. [17], the APT2C is efficient in parameter evaluation when the full period of
the trial is not a significant matter. On the other hand, if the products being studied are exceptionally
reliable, the assessment process may require a lengthy period, and the APT2C plan cannot ensure that
the total test duration is suitable. To overcome this limitation, Yan et al. [25] proposed an improved-
APT2C (IAPT2C). It guarantees that the assessment ends in the allotted amount of time. It can also be
viewed as a generalization of many plans. Therefore, if the investigator aims to finish the test within a
designated time frame, the IAPT2C may be applied. The description of the IAPT2C plan is presented
in the next section. Recently, some studies considered this scheme; see for example Elbatal [26] and
Dutta and Kayal [27].

In this study, we utilize the IAPT2C under the CSALTs when the tested failure times follow the
Weibull model. This work’s motivation comes from: (1) The popularity and flexibility of the Weibull
distribution in modeling various data types; (2) the effectiveness of combining CSALTs with the
IAPT2C plan in cutting the test time and estimating the product’s performance under regular usage
circumstances; (3) it is the first time that the product of spacings (PS) function has been used in the
case of the IAPT2C with CSALTs, so we are interested to see how it performs when compared with
other classical and Bayesian methods; (4) the reliability function (RF) estimation under normal use
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situations was researched in a few studies, despite many examining the estimation issues in the
presence of CSALTs. To put it another way, the vast majority of the studies have only focused on the
estimation issues of unknown parameters and have said nothing about the estimation of the RF under
normal operational settings. We believe it is important for reliability engineers and other practitioners
to identify the RF for the Weibull distribution under normal operating conditions. For more detail
about the importance of the reliability estimation, see Xu et al. [28] and Wang et al. [29]. To achieve
our objectives, the unknown parameters are estimated using two classical approaches, namely
maximum likelihood and maximum product of spacings (MPS) methods. Moreover, the Bayesian
method via the Markov chain Monte Carlo (MCMC) sampling technique is considered to get different
estimates when the observed data are evaluated using the two classical approaches. Based on the
different estimation methods, the scale and reliability parameters are estimated at the designed stress
level. In addition, the approximate confidence intervals (ACIs) and the Bayes credible intervals
(BCIs) are acquired. As far as we are aware, this is the first time that the various estimation
approaches to the Weibull distribution under the IAPT2C with CSALTs have been studied. Another
important motivation for this paper is to compare the maximum likelihood estimators (MLEs) with
the MPS estimators (MPSEs), as well as the corresponding Bayesian ones. To assess our findings, an
extensive simulation study is implemented. It is very interesting for statisticians and applied
researchers to see the applicability of the different methods offered in real-life cases. Consequently,
two groups of real-world data are explored to demonstrate how the suggested methodologies may be
applied in reality.

This study is arranged as follows: In Section 2, we provide the model and basic assumptions. In
Section 3, the point and interval estimates of the unknown subjects are obtained using the maximum
likelihood method. The various estimates using the MPS method are provided in Section 4. The
Bayes’ method is utilized in Section 5. In Section 6, the various estimation methods are compared via
a simulation study. Two real CSALT data sets are analyzed in Section 7. Section 8 ends the study.

2. Model description

In this work, we make the assumption that the lifespan of products follows the Weibull distribution.
It is favoured because it is a logical generalization of the exponential distribution and hence recreates
a critical role in many applications in different fields, including analyzing engineering, biological, and
medical data sets. Here, we consider the Weibull CSALTs model with the next two assumptions:

(1) The unit lifetime associated with each stress level si, i = 1, . . . , k is Weibull, and the
corresponding probability density function (PDF) and cumulative distribution function (CDF)
are outlined below:

fi(x) = λiθxθ−1e−λi xθ ; x > 0, λi, θ > 0, (2.1)

and

Fi(x) = 1 − e−λi xθ , (2.2)

where λi and θ are the scale and shape parameters, respectively.
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(2) The relationship between stress and life is proposed to be expressed in the log-linear model as
follows:

log(λi) = β0 + β1si, i = 1, . . . , k,

where β0 and β1 are unknown parameters to be estimated.

The Weibull log-linear model for the scale parameter has been extensively investigated in the
literature, see, for example, Wang and Kececioglu [30]. It is known that the ALTs are often performed
in the context of stress factors such as temperature, voltage or pressure. Because the main objective of
executing the ALTs is to deduce reliability at a normal level of stress, the statistical model employed
for this goal must have some technical foundation as well. As a result, the use of the log-linear
model described in assumption 2 allows some conventional engineering models, including inverse
power, Arrhenius, and exponential models to be readily acquired as special instances. See for more
detail Roy [31].

Based on the CSALTs, assume k accelerated stress levels s1 < s2 < · · · < sk and the designed
stress level is denoted by su. Also, suppose that there are N similar test units splited into k sets of
size n1, n2, . . . , nk, where

∑k
i=1 ni = N. Before starting the experiment, the number (mi < ni), i =

1, . . . , k, the progressive censoring plan Ri,1, . . . ,Ri,mi such that ni = mi +
∑mi

j=1 Ri, j and two thresholds
Ti,1,Ti,2 ∈ (0,∞), where Ti,1 < Ti,2, i = 1, . . . , k are determined in advance, taking into account that
some values of Ri, j’s, i = 1, . . . , k, j = 1, . . . ,mi may be changed during the experiment. Then, the
IAPT2C with CSALTs can be stated as follows: At the stress level si, i = 1, . . . , k, when the first failure
arises, designated by Xi,1, Ri,1 (surviving units) are randomly discarded. At Xi,2, Ri,2 units are randomly
withdrawn from the remaining surviving units, and so on. Here, we have three possible cases outlined
as follows:

(1) Case I: If Xi,mi < Ti,1, the test stops at the time of mi − th failure with Ri,mi = ni − mi −
∑mi−1

j=1 Ri, j

are withdrawn. In this case, we have PT2C with CSALTs.
(2) Case II: If Xi,di < Ti,1 < Xi,di+1, where di is the size of failures at Ti,1 and (di + 1) < mi, with

Xi,mi < Ti,2, then we set Ri,di+1 = · · · = Ri,mi−1 = 0 and end the test at the time of mi − th failure
and at which point all the remaining Ri,mi = ni −mi −

∑di
j=1 Ri, j units are removed. In this case, we

have APT2C with CSALTs.
(3) Case III: If Xi,mi > Ti,2, the experiment terminates at Ti,2, with the understanding that no units will

be discarded from the experiment when the test time passes the threshold Ti,1. In this case, we
have d∗i < mi number of observed failures, where d∗i is the number of failures before the time Ti,2.
At the time Ti,2, all remaining units are withdrawn, i.e., R∗i = ni − d∗i −

∑di
j=1 Ri, j. This describes

the IAPT2C with CSALTs.

We can express the likelihood function (LF) of the observed data as follows, ignoring the normalized
constant, based on the aforementioned scenarios

L(θ, β0, β1) =
k∏

i=1

 Ji∏
j=1

fi(xi, j)
Di∏
j=1

[
1 − Fi(xi, j)

]Ri, j [
1 − Fi(T ∗i )

]R∗i

 , (2.3)

where

Ji =

mi, for Cases I and II;
d∗i , for Case III,

Di =

mi, for Case I;
di, for Cases II and III,
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R∗i =


0, for Case I;
ni − di −

∑di
j=1 Ri, j, for Case II;

ni − d∗i −
∑di

j=1 Ri, j, for Case III,

and T ∗i = 0, xi,mi and Ti,2 for Cases I, II and III, respectively. Before proceeding, for clarity, Figure 1
depicts the various point and interval estimations considered in this work.

Figure 1. Flowchart of the proposed classical and Bayesian estimation approaches.

3. Maximum likelihood approach

In this part, the MLEs of θ, β0 and β1 are discussed using IAPT2C with CSALTs data. Under typical
use settings, the MLEs of the scale parameter λu and RF Ru(x0) are provided. Moreover, the interval
estimations of the different parameters are formed through the asymptotic theory of the MLEs.

3.1. Point estimation

From (2.1)–(2.3), we can express the LF of θ, β0 and β1 as

L(θ, β0, β1) = θJ exp
(
Jβ0 + β1

∑k

i=1
Jisi

)
exp

[
−

∑k

i=1
exp(β0 + β1si)Ψi(θ)

] k∏
i=1

Ji∏
j=1

xθ−1
i, j , (3.1)

where J =
∑k

i=1 Ji and Ψi(θ) =
∑Ji

j=1 xθi, j +
∑Di

j=1 Ri, jxθi, j + R∗i T ∗θi . The log-LF of (3.1) of θ, β0 and β1 can
be expressed as

ℓ(θ, β0, β1) = J log(θ) + Jβ0 + δβ1 + (θ − 1)
∑k

i=1

∑Ji

j=1
log(xi, j) −

∑k

i=1
exp(β0 + β1si)Ψi(θ), (3.2)

where δ =
∑k

i=1 Jisi. The MLEs θ̂, β̂0 and β̂0 of θ, β0 and β1 can be inferred as

∂ℓ

∂θ
=

J
θ
+

∑k

i=1

∑Ji

j=1
log(xi, j) −

∑k

i=1
exp(β0 + β1si)Ψ

′

i(θ) = 0, (3.3)
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∂ℓ

∂β0
= J −

∑k

i=1
exp(β0 + β1si)Ψi(θ) = 0 (3.4)

and

∂ℓ

∂β1
= δ −

∑k

i=1
si exp(β0 + β1si)Ψi(θ) = 0, (3.5)

where Ψ
′

i(θ) =
∑Ji

j=1 xθi, j log(xi, j)+
∑Di

j=1 Ri, jxθi, j log(xi, j)+ R∗i T ∗θi log(T ∗i ). Using (3.4), the MLE of β0 can
be obtained as a function of the other two parameters as follows

β̂0(θ, β1) = log(J) − log

 k∑
i=1

eβ1 siΨi(θ)

 . (3.6)

Substituting β̂0(θ, β1) in (3.3) and (3.5), the MLEs of θ and β1, denoted by θ̂ and β̂1, can be reached
by solving the subsequent normal equations

1
θ
+

∑k
i=1

∑Ji
j=1 log(xi, j)

J
−

∑k
i=1 eβ1 siΨ

′

i(θ)∑k
i=1 eβ1 siΨi(θ)

= 0 (3.7)

and
δ

J
−

∑k
i=1 sieβ1 siΨi(θ)∑k
i=1 eβ1 siΨi(θ)

= 0. (3.8)

Clearly, there are no closed-form solutions to obtain the MLEs of θ and β1. Therefore, one could
direct oneself to numerical iterative procedures like the Newton-Raphson method to acquire the needed
estimates from (3.7) and (3.8). Upon the MLEs of θ and β1 being obtained, the MLE β̂0 =

ˆ̂β0(θ̂, β̂1) of
β0 can be obtained directly from (3.6).

Since log(λi) = β0 + β1si, one can derive the MLE of λi as a function of θ as λ̂i(θ) = Ji/Ψi(θ).
Therefore, we can conclude that λ̂i exists and is unique if θ exists and is unique. Substitute λ̂i(θ)
in (3.2), the profile log-LF at stress level i can be written as

ϖ(θ) = Ji log(θ) + θ
Ji∑

j=1

log(xi, j) − Ji log(Ψi(θ)). (3.9)

From Lemma 1 in Wang [5], one can conclude that the profile log-LF ϖ(θ) is concave with respect
to θ. Consequently, at stress level i, the MLE of θ can be found as

1
θ
=
Ψ
′

i(θ)
Ψi(θ)

−

∑Ji
j=1 log(xi, j)

Ji
. (3.10)

It is simple to demonstrate that 1/θ is a monotone decreasing function in θ using (3.10). Conversely,
the right-side in (3.10) is monotone increasing in θ, as shown by Lemma 2 in Wang [5]. As a result,
there is a clear interaction location for the slopes of both variables from both directions in (3.10). This
suggests that the MLE of θ exists and is unique.

Remark 1. A number of previous studies are expanded upon and readily transformed into special
scenarios based on the findings obtained in this investigation. Examples of these include:
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• The results of Cui et al. [32], by setting Ti,2 → ∞ for i = 1, 2, . . . , k, in the case of APT2C data.
• The results of Ismail [33], by setting Ti = Ti,1 = Ti,2 for i = 1, 2, . . . , k, in the case of Type-I

progressive hybrid censored data.
• The results of Wang et al. [34], by setting Ti,1 → ∞ for i = 1, 2, . . . , k, in the case of PT2C data.
• The results of Watkins and John [35], by setting Ti,1 → ∞, Ri, j = 0 and Ri,mi = ni − mi for

i = 1, . . . , k, j = 1, . . . ,mi − 1, in the case of Type-II censored data.

It is important to estimate the scale parameter at the designed stress level as well as the RF. To get
such estimates, one can utilize the invariance property of the MLEs. Let λu be the scale parameter
under the designed stress level su, then the MLE of λu, denoted by λ̂u, can be obtained as

λ̂u = eβ̂0+β̂1 su . (3.11)

Similarly, the MLE of the RF at time x0 under the designed stress level can be acquired as follows

R̂u(x0) = e−λ̂u xθ̂0 , (3.12)

where R(·) = 1 − F(·) and λ̂u is evaluated from (3.11).

3.2. Asymptotic interval estimation

Based on the MLEs’ asymptotic normality, the interval estimates for the unknown parameters are
given in this subsection. Furthermore, we employ the delta method to approximate the variances of
the estimators of the scale parameter and the RF at the designed stress level to obtain the related
interval ranges.

In order to accomplish our goals, we first need to get the expressions of the second derivatives
obtained from the log-LF in (3.2) as

∂2ℓ(θ, β0, β1)
∂θ2 = −

J
θ2 −

k∑
i=1

exp(β0 + β1si)Ψ
′′

i (θ),

∂2ℓ(θ, β0, β1)
∂β2

0

= −

k∑
i=1

exp(β0 + β1si)Ψi(θ),

∂2ℓ(θ, β0, β1)
∂β2

1

= −

k∑
i=1

s2
i exp(β0 + β1si)Ψi(θ),

∂2ℓ(θ, β0, β1)
∂θ∂β0

= −

k∑
i=1

exp(β0 + β1si)Ψ
′

i(θ),

∂2ℓ(θ, β0, β1)
∂θ∂β1

= −

k∑
i=1

si exp(β0 + β1si)Ψ
′

i(θ)
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and

∂2ℓ(θ, β0, β1)
∂β0∂β1

= −

k∑
i=1

si exp(β0 + β1si)Ψi(θ),

where Ψ
′′

i (θ) =
∑Ji

j=1 xθi, j log2(xi, j) +
∑Di

j=1 Ri, jxθi, j log2(xi, j) + R∗i T ∗θi log2(T ∗i ). The complex nature of the
expectations of the second partial derivatives makes it evident that the asymptotic variance-covariance
matrix (AV-CM) of the MLEs of θ, β0, and β1 cannot be constructed. Therefore, by obtaining the
inverted observed Fisher information as follows, we are able to obtain the approximate AV-CM for
the MLEs

I0(θ̂, β̂0, β̂1) =


−
∂2ℓ(θ,β0,β1)

∂θ2 −
∂2ℓ(θ,β0,β1)

∂θ∂β0
−
∂2ℓ(θ,β0,β1)

∂θ∂β1

−
∂2ℓ(θ,β0,β1)

∂β0∂θ
−
∂2ℓ(θ,β0,β1)

∂β2
0

−
∂2ℓ(θ,β0,β1)
∂β0∂β1

−
∂2ℓ(θ,β0,β1)

∂β1∂θ
−
∂2ℓ(θ,β0,β1)
∂β1∂β0

−
∂2ℓ(θ,β0,β1)

∂β2
1


−1

(θ,β0,β1)=(θ̂,β̂0,β̂1)

. (3.13)

Obviously, the asymptotic distribution of (θ̂, β̂0, β̂1) is N
[
(θ, β0, β1), I0(θ̂, β̂0, β̂1)

]
, where I0(θ̂, β̂0, β̂1)

is determined by (3.13). Hence, the 100(1 − α)% ACIs of θ̂, β̂0 and β̂1 can be computed as

θ̂ ± zα/2
√

v̂ar(θ̂), β̂0 ± zα/2
√

v̂ar(β̂0) and β̂1 ± zα/2
√

v̂ar(β̂1),

where v̂ar(θ̂), v̂ar(β̂0) and v̂ar(β̂1) are the main diagonal elements of I0(θ̂, β̂0, β̂1) given by (3.13),
respectively, and zα/2 is the higher (α/2) − th percentile standard normal level.

In order to construct the ACIs for the λu and the RF under the designed stress level, we require
getting the variances of their estimators. To obtain such variances, we suggest using the delta method
to compute the approximate estimates of these variances; see Greene [36] for complete details about
the delta method. Let v̂ar(λ̂u) and v̂ar(R̂u) denote the approximate estimates of the variances of the
MLEs of the scale parameter and RF, respectively. Then, based on the delta method, we have

v̂ar(λ̂u) ≃
[
Λλu I0(θ̂, β̂0, β̂1)Λ⊤λu

]
(θ,β0,β1)=(θ̂,β̂0,β̂1)

and v̂ar(R̂u) ≃
[
ΛRu I0(θ̂, β̂0, β̂1)Λ⊤Ru

]
(θ,β0,β1)=(θ̂,β̂0,β̂1)

where

Λλu =

(
∂λu

∂θ
,
∂λu

∂β0
,
∂λu

∂β1

)
and ΛRu =

(
∂Ru

∂θ
,
∂Ru

∂β0
,
∂Ru

∂β1

)
, (3.14)

with the following elements

∂λu

∂θ
= 0,

∂λu

∂β0
= eβ0+β1 su

∂λu

∂β1
= sueβ0+β1 su ,

∂Ru

∂θ
= −xθ0 log(x0) exp

[
−xθ0 eβ0+β1 su + β0 + β1su

]
,

∂Ru

∂β0
= −xθ0 exp

[
−xθ0 eβ0+β1 su + β0 + β1su

]
AIMS Mathematics Volume 9, Issue 7, 16931–16965.
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and
∂Ru

∂β1
= −su xθ0 exp

[
−xθ0 eβ0+β1 su + β0 + β1su

]
.

Now, the 100(1 − α)% ACIs for the scale parameter and the RF under the designed stress level can
be obtained, respectively, as follows:

λ̂u ± zα/2
√

v̂ar(λ̂u) and R̂u(x0) ± zα/2
√

v̂ar(R̂u).

4. Maximum product of spacings approach

The MPS estimation approach is proposed as a competitive approach to the usual maximum
likelihood method by Cheng and Amin [37] and Ranneby [38], independently. Using this approach,
the MPSEs are attained using the same logic as the MLEs by maximizing the PS function. Let
∆i, j = F(xi, j) − F(xi, j−1), i = 1, . . . , k, j = 1, . . . , Ji be the uniform spacings of an IAPT2C random
sample of size Ji from the Weibull distribution under CSALTs with xi,0 = 0, xi,Ji+1 = ∞ and
∆i,Ji+1 = 1 − F(xi,Ji) such that

∑Ji+1
j=1 ∆i, j = 1. For more studies about the MPS procedure, one can refer

to Basu et al. [39], Volovskiy and Kamps [40], and Chaturvedi et al. [41]. However, we can write the
PS function of the IAPT2C with CSALTs data as follows:

P(θ, β0, β1) =
k∏

i=1

Ji+1∏
j=1

∆i, j

Di∏
j=1

[
1 − Fi(xi, j)

]Ri, j [
1 − Fi(T ∗i )

]R⋆i

 . (4.1)

In this section, we study the MPSEs of θ, β0 and β1 using IAPT2C with CSALTs data. Utilizing
the invariance trait of the MPSEs, the estimates of λu and RF at the designed stress level are also
computed. Likewise, the ACIs of the different parameters are created using the asymptotic normality
of the MPSEs. For more detail regarding the properties of the MPSEs, one can see Ranneby [38],
Cheng and Traylor [42], Ghosh and Jammalamadaka [43], and Anatolyev and Kosenok [44].

4.1. Point estimation

Suppose we have an IAPT2C sample taken from the Weibull population with CDF given by (2.2),
the PS function of θ, β0 and β1 can be expressed using (2.2) and (4.1) as follows:

P(θ, β0, β1) = exp

− k∑
i=1

exp(β0 + β1si)Φi(θ)

 k∏
i=1

Ji+1∏
j=1

[
exp(−eβ0+β1 si xθi, j−1) − exp(−eβ0+β1 si xθi, j)

]
, (4.2)

where Qi(θ) =
∑Di

j=1 Ri, jxθi, j + R∗i T ∗θi . The log-PS function of (4.2) takes the form

p(θ, β0, β1) =
k∑

i=1

Ji+1∑
j=1

log
[
exp(−eβ0+β1 si xθi, j−1) − exp(−eβ0+β1 si xθi, j)

]
−

k∑
i=1

exp(β0 + β1si)Qi(θ). (4.3)

The MPSEs θ̃, β̃0 and β̃1 of θ, β0 and β1 can be obtained by maximizing the objective function
in (4.3) with respect to θ, β0 and β1, or equivalently by solving the following three normal equations:

∂p(θ, β0, β1)
∂θ

=

k∑
i=1

Ji+1∑
j=1

ϕi, j − ϕi, j−1

∆i, j
−

k∑
i=1

exp(β0 + β1si)Q
′

i(θ) = 0, (4.4)

AIMS Mathematics Volume 9, Issue 7, 16931–16965.



16941

∂p(θ, β0, β1)
∂β0

=

k∑
i=1

Ji+1∑
j=1

φi, j − φi, j−1

∆i, j
−

k∑
i=1

exp(β0 + β1si)Qi(θ) = 0 (4.5)

and

∂p(θ, β0, β1)
∂β1

=

k∑
i=1

Ji+1∑
j=1

si
φi, j − φi, j−1

∆i, j
−

k∑
i=1

si exp(β0 + β1si)Qi(θ) = 0, (4.6)

where

ϕi, j = xθi, j log(xi, j) exp
[
−xθi, j eβ0+β1 si + β0 + β1si

]
,

∆i, j = exp(−eβ0+β1 si xθi, j−1) − exp(−eβ0+β1 si xθi, j),

Q
′

i(θ) =
Di∑
j=1

Ri, jxθi, j log(xi, j) + R∗i T ∗θi log(T ∗i )

and

φi, j = xθi, j exp
[
−xθi, j eβ0+β1 si + β0 + β1si

]
.

It is clear from (4.4)–(4.6) that the MPSEs cannot be obtained in closed-form solutions, similar
to the case of the MLEs. Accordingly, one can employ an iterative technique to attain the needed
estimates numerically. Consequently, employing the invariance property of the MPSEs, we can get the
MPSEs of λu and RF under the designed stress level, respectively, as

λ̃u = eβ̃0+β̃1 su (4.7)

and

R̃u(x0) = e−λ̃u xθ̃0 . (4.8)

4.2. Interval estimation

In this subsection, we use the asymptotic features of the MPSEs to create the ACIs of θ, β0 and
β1 as well as λu and RF at the designed stress level. Firstly, from (4.3), we require obtaining the next
quantities

∂2 p(θ, β0, β1)
∂θ2 =

k∑
i=1

Ji+1∑
j=1

ϕ′i, j − ϕ′i, j−1

∆i, j
−

(ϕi, j − ϕi, j−1)2

∆2
i, j

 − k∑
i=1

exp(β0 + β1si)Q
′′

i (θ),

∂2 p(θ, β0, β1)
∂β0

=

k∑
i=1

Ji+1∑
j=1

φ′i, j − φ′i, j−1

∆i, j
−

(φi, j − φi, j−1)2

∆2
i, j

 − k∑
i=1

exp(β0 + β1si)Qi(θ),
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∂2 p(θ, β0, β1)
∂β0

=

k∑
i=1

Ji+1∑
j=1

s2
i

φ′i, j − φ′i, j−1

∆i, j
−

(φi, j − φi, j−1)2

∆2
i, j

 − k∑
i=1

s2
i exp(β0 + β1si)Qi(θ),

∂2 p(θ, β0, β1)
∂θ∂β0

=

k∑
i=1

Ji+1∑
j=1

ϕ◦i, j − ϕ◦i, j−1

∆i, j
−
ψi, j

∆2
i, j

 − k∑
i=1

exp(β0 + β1si)Q
′

i(θ),

∂2 p(θ, β0, β1)
∂θ∂β1

=

k∑
i=1

Ji+1∑
j=1

si

ϕ◦i, j − ϕ◦i, j−1

∆i, j
−
ψi, j

∆2
i, j

 − k∑
i=1

si exp(β0 + β1si)Q
′

i(θ)

and

∂2 p(θ, β0, β1)
∂β0∂β1

=

k∑
i=1

Ji+1∑
j=1

si

φ′i, j − φ′i, j−1

∆i, j
−

(φi, j − φi, j−1)2

∆2
i, j

 − k∑
i=1

si exp(β0 + β1si)Qi(θ),

where

ϕ
′

i, j = xθi, j log2(xi, j) exp
[
−xθi, j eβ0+β1 si + β0 + β1si

] [
1 − xθi, j eβ0+β1 si

]
,

Q
′′

i (θ) =
Di∑
j=1

Ri, jxθi, j log2(xi, j) + R∗i T ∗θi log2(T ∗i ),

φ
′

i, j = xθi, j exp
[
−xθi, j eβ0+β1 si + β0 + β1si

] [
1 − xθi, j eβ0+β1 si

]
,

ψi, j = (ϕi, j − ϕi, j−1)(φi, j − φi, j−1) and ϕ◦i, j = ϕ
′

i, j log(xi, j).

The expectations of the expressions of the second derivatives are not straightforward to obtain.
Thus, the AV-CM of the MPSEs of θ, β0, and β1 cannot be obtained in closed structures. So, we use
the approximate AV-CM for the MPSEs as

I0(θ̃, β̃0, β̃1) =


−
∂2 p(θ,β0,β1)

∂θ2 −
∂2 p(θ,β0,β1)

∂θ∂β0
−
∂2 p(θ,β0,β1)

∂θ∂β1

−
∂2 p(θ,β0,β1)

∂β0∂θ
−
∂2 p(θ,β0,β1)

∂β2
0

−
∂2 p(θ,β0,β1)
∂β0∂β1

−
∂2 p(θ,β0,β1)

∂β1∂θ
−
∂2 p(θ,β0,β1)
∂β1∂β0

−
∂2 p(θ,β0,β1)

∂β2
1


−1

(θ,β0,β1)=(θ̃,β̃0,β̃1)

. (4.9)

Following the MPSE’s asymptotic features, similar to the case of the MLEs, the 100(1 − α)% ACIs
of θ, β0 and β1 can be constructed as

θ̃ ± zα/2
√

ṽar(θ̃), β̃0 ± zα/2
√

ṽar(β̃0) and β̃1 ± zα/2
√

ṽar(β̃1),

where ṽar(θ̃), ṽar(β̃0) and ṽar(β̃1) are the main diagonal elements of I0(θ̃, β̃0, β̃1) presented by (4.9).
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Now, we need to build the ACIs of the λu and the RF under the designed stress level. To achieve
this purpose, we first consider using the delta method to compute the approximate estimates of the
variances ṽar(λ̃u) and ṽar(R̃u) as follows:

ṽar(λ̃u) ≃
[
Λλu I0(θ̃, β̃0, β̃1)Λ⊤λu

]
(θ,β0,β1)=(θ̃,β̃0,β̃1)

and ṽar(R̃u) ≃
[
ΛRu I0(θ̃, β̃0, β̃1)Λ⊤Ru

]
(θ,β0,β1)=(θ̃,β̃0,β̃1)

where Λλu and ΛRu are as defined in (3.14). Then, the 100(1 − α)% ACIs of λu and RF under the
designed stress level are computed, respectively, by

λ̃u ± zα/2
√

ṽar(λ̃u) and R̃u(x0) ± zα/2
√

ṽar(R̃u).

5. Bayesian approach

When the sample size is large enough or there is no censoring of the data, classical estimation
procedures usually produce highly precise results. However, in experiments with small sample sizes or
when there is censored data, these classical procedures can sometimes lead to misleading and incorrect
conclusions. The Bayesian approach offers a solution by incorporating additional prior information,
such as historical data or existing knowledge, into the statistical inference process. This allows for more
accurate estimations. In this section, we will discuss Bayesian estimations of θ, β0, and β1. We will also
examine λu and RF under the designated stress level. To investigate the Bayesian estimates, both points
and intervals, we will derive the posterior distributions based on the LF and PS functions, respectively.

5.1. Prior information and loss function

In this subsection, it is considered that the parameters θ, β0 and β1 are statistically independent. It
is observed from (3.1) or (4.2) that no conjugate prior distributions are available for the unknown
parameters due to the complex expressions of the LF or PS function. Furthermore, it is to be
mentioned here that it is not straightforward to involve Jeffrey’s priors because of the complicated
form of the Fisher information matrices using both classical approaches. Therefore, we assume that
the parameters θ and β1 have gamma PDFs, i.e., θ ∼ Gamma(c1,w1) and β1 ∼ Gamma(c2,w2). We
consider the gamma prior distributions since they adjust the support of the unknown parameters θ and
β1 and are fairly straightforward. They are also flexible and incorporate a wide range of prior
knowledge. Furthermore, the usage of gamma prior distributions may not result in much complexity
in posterior evaluation or calculation scenarios, particularly when employing the MCMC technique.
On the other hand, it is known that the parameter β0 can be positive (or negative) depending on the
nature of the product. Therefore, we adopted this information and assumed that the parameter β0 has a
normal prior distribution, i.e., β0 ∼ N(µ, σ2). Here, we select the normal distribution due to its
popularity and flexibility with the understanding that some other distributions like generalized logistic
type-I or Gumbel distributions can be used. So, the joint prior distribution becomes

g(θ, β0, β1) ∝ θc1−1βc2−1
1 exp

[
−

(
w1θ + w2β1 + (β0 − µ)2/2σ2

)]
, θ, β1 > 0,−∞ < β0 < ∞, (5.1)

where c1, c2,w1,w2, σ > 0 and −∞ < µ < ∞, are the associated hyper-parameters and are considered
to be known. The joint prior in (5.1) reduces to the case of non-informative prior when c1 = c2 = w1 =

w2 = µ = 0 and σ = β0/
√

2 log(β0).
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From a Bayesian perspective, the choice of loss function plays a crucial part in the inference issues.
Since there is no precise analytical method for determining which loss function should be used, most
studies on estimating problems have assumed that the underlying loss function, which is a symmetric
loss function, is the squared error loss function (SELF). Assuming τ̌ represents the parameter τ’s
Bayesian estimator, then the SELF can be expressed as

ζ(τ, τ̌) = (τ̌ − τ)2. (5.2)

From (5.2), the Bayes estimator τ̌ of τ is the posterior mean of τ.

5.2. Bayesian estimation via likelihood-based

Combining the LF in (3.1) with the joint prior distribution in (5.1), the joint posterior PDF of θ, β0,
and β1 can be expressed as

π(θ, β0, β1) = A θJ+c1−1βc2−1
1 exp

[
Jβ0 − (β0 − µ)2/2σ2 − β1(w2 − δ) − w1θ

] k∏
i=1

Ji∏
j=1

xθ−1
i, j

× exp
[
−

∑k

i=1
exp(β0 + β1si)Ψi(θ)

]
, (5.3)

where A is the normalized constant. Let η(θ, β0, β1) be any parametric function of θ, β0 and β1, then the
Bayesian estimator using likelihood-based, denoted by η̌(θ, β0, β1), using the SELF is the expectation
of the posterior distribution in (5.3), which is given by

η̌(θ, β0, β1) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
0
η(θ, β0, β1)g(θ, β0, β1)L(θ, β0, β1)dθdβ0dβ1∫ ∞

0

∫ ∞
−∞

∫ ∞
0

g(θ, β0, β1)L(θ, β0, β1)dθdβ0dβ1

. (5.4)

From (5.4), it is obvious that it is not probable to acquire an exact expression for the Bayesian
estimator η̌(θ, β0, β1) because it is depicted as the ratio of three intractable integrals. Accordingly, the
MCMC technique is implemented to calculate the required estimates. To do the steps of the MCMC
technique, we first need to derive the conditional distributions of θ, β0 and β1 as

π1(θ|β0, β1) ∝ θJ+c1−1e−w1θ exp
[
−

∑k

i=1
exp(β0 + β1si)Ψi(θ)

] k∏
i=1

Ji∏
j=1

xθ−1
i, j , (5.5)

π2(β0|β1, θ) ∝ exp
[
−

∑k

i=1
exp(β0 + β1si)Ψi(θ) + Jβ0 − (β0 − µ)2/2σ2

]
(5.6)

and

π3(β1|β0, θ) ∝ β
c2−1
1 e−β1(w2−δ) exp

[
−

∑k

i=1
exp(β0 + β1si)Ψi(θ)

]
. (5.7)

Clearly, the conditional distributions of θ, β0, and β1 in (5.5)–(5.7) cannot be described by any well-
known distributions. Thus, to get the Bayes estimates, the Metropolis-Hastings (M-H) procedure is
operated to yield random samplings from these distributions. However, to perform Bayesian estimation
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by performing the M-H algorithm, the stages of the sample generation procedure in Algorithm 1 have
to be completed.

Algorithm 1 The M-H procedure

Step 1. Begin with initial values of (θ, β0, β1), say
(
θ(0), β(0)

0 , β(0)
1

)
=

(
θ̂, β̂0, β̂1

)
.

Step 2. Put t = 1.

Step 3. Get θ∗ from (5.5) using normal proposal distribution N(θ(t−1), v̂ar(θ̂)).

Step 4. Obtain the acceptance probability p(θ(t−1)|θ∗) = min
[
1, π1(θ∗ |β(t−1)

0 ,β(t−1)
1 )

π1(θ(t−1) |β(t−1)
0 ,β(t−1)

1 )

]
.

Step 5. Generate u, where U ∼ U(0, 1).

Step 6. If u ≤ p(θ(t−1)|θ∗), set θ(t) = θ∗, else, set θ(t) = θ(t−1).

Step 7. Redo Steps 3–6 for β0 and β1 to generate β(t)
0 and β(t)

1 from (5.6) and (5.7), respectively.

Step 8. Obtain λ(t)
u = eβ

(t)
0 +β

(t)
1 su and R(t)

u (x0) = exp
[
−xθ

(t)

0 eβ
(t)
0 +β

(t)
1 su

]
.

Step 9. Put t = t + 1.

Step 10. Redo Steps 3–8 H times to calculate:[
θ(1), β(1)

0 , β(1)
1 , λ(1)

u ,R(1)
u (x0)

]
, . . . ,

[
θ(H), β(H)

0 , β(H)
1 , λ(H)

u ,R(H)
u (x0)

]
.

Consequently, the Bayesian estimates of θ, β0 and β1 under the SELF can be obtained as follows:

θ̌ =
1

H − M

∑H

t=M+1
θ(t), β̌0 =

1
H − M

∑H

t=M+1
β(t)

0 and β̌1 =
1

H − M

∑H

t=M+1
β(t)

1 ,

where M is the burn-in period. Also, the Bayesian estimates of λu and RF at the designed stress level
can be computed, respectively, as

λ̌u =
1

H − M

∑H

t=M+1
λ(t)

u , and Řu(x0) =
1

H − M

∑H

t=M+1
R(t)

u (x0).

Moreover, Algorithm 2 offers the steps for creating a 100(1 − α)% BCI of ξ, where
ξ = [θ, β0, β1, λu,Ru(x0)].

Algorithm 2 The BCI procedure

Step 1. From Step 10 in Algorithm 1, sort ξ(t), t = M + 1, . . . ,H in ascending order as

ξ[M+1], . . . , ξ[H].

Step 2. The 100(1 − α)% BCI of ξ is given by
{
ξ[α(H−M)/2], ξ[(1−α/2)(H−M)]

}
.
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5.3. Bayesian estimation via product of spacings-based

The Bayesian estimators of θ, β0, and β1 as well as λu and RF at the usual stress level are obtained
using PS-based estimation. Merging the PS function in (4.2) with the joint prior distribution given
by (5.1), the joint posterior distribution of θ, β0, and β1 takes the following form

ϖ(θ, β0, β1) = B θc1−1βc2−1
1 exp

[
−(β0 − µ)2/2σ2 − β1w2 − w1θ −

∑k

i=1
exp(β0 + β1si)Qi(θ)

]
×

k∏
i=1

Ji+1∏
j=1

[
exp(−eβ0+β1 si xθi, j−1) − exp(−eβ0+β1 si xθi, j)

]
, (5.8)

where B is the normalized constant. Using the SELF (5.2) and the joint posterior PDF (5.8), one can
obtain the Bayesian estimator using the PS-based of η(θ, β0, β1), denoted by η̆(θ, β0, β1), as follows:

η̆(θ, β0, β1) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
0
η(θ, β0, β1)g(θ, β0, β1)P(θ, β0, β1)dθdβ0dβ1∫ ∞

0

∫ ∞
−∞

∫ ∞
0

g(θ, β0, β1)P(θ, β0, β1)dθdβ0dβ1

. (5.9)

Similar to the case of Bayesian estimation using the likelihood-based method, it is not achievable
to obtain (5.9) analytically. Hence, we suggest approximating it by employing the MCMC technique.
To apply the MCMC steps, we first derive the conditional distributions of θ, β0 and β1, respectively, as

ϖ1(θ|β0, β1) ∝ θc1−1 exp
[
−w1θ −

∑k

i=1
exp(β0 + β1si)Qi(θ)

] k∏
i=1

Ji+1∏
j=1

∆i, j(θ, β0, β1), (5.10)

ϖ2(β0|β1, θ) ∝ exp
[
−(β0 − µ)2/2σ2 −

∑k

i=1
exp(β0 + β1si)Qi(θ)

] k∏
i=1

Ji+1∏
j=1

∆i, j(θ, β0, β1) (5.11)

and

ϖ3(β1|β0, θ) ∝ β
c2−1
1 exp

[
−β1w2 −

∑k

i=1
exp(β0 + β1si)Qi(θ)

] k∏
i=1

Ji+1∏
j=1

∆i, j(θ, β0, β1), (5.12)

where ∆i, j(θ, β0, β1) = ∆i, j.

Remark 2. The conditional distributions in (5.10)–(5.12) cannot be presented by any known
distribution, hence samples from these distributions can be gained via the M-H technique. This
enables the acquisition of the necessary Bayesian estimates for the various parameters. For this
goal, the same procedures as are listed in Algorithms 1 and 2 can be carried out.

6. Simulation outcomes

By considering two sets of stress levels si, i = 1, 2, namely Stress-I:(0.25,0.75) and
Stress-II:(1.5,2.5), a number of 1,000 IAPT2C samples are generated when the true value of
parameters (θ, β0, β1) is taken as (0.8,0.5,0.2) for different combinations of (Ti,1,Ti,2), namely (0.1,0.3)
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and (0.3,0.7). To analyze the efficiency of the proposed estimators of θ, β0, β1, λu, λ1, λ2 and Ru(x0),
we perform comparisons based on different choices of complete (effective) sample sizes ni(mi), two
time thresholds Ti,1 and Ti,2, censoring schemes Ri, j’s for i = 1, 2, . . . , k and j = 1, 2, . . . ,mi. The
design scenarios of this study are presented in Table 1. Here, we assume that the predetermined times
Ti,1 and Ti,2 are equal for the different stress levels. Therefore, we use the notation (T1,T2) instead of
Ti,1 and Ti,2 in this section. For each scenario, the actual values corresponding to the unknown
parameters (λ1, λ2) with respect to stress sets I and II are (1.7333, 1.9155) and (2.2255, 2.7182),
respectively. Furthermore, using su = 0.1, the proposed estimates of λu and Ru(x0), for distinct time
x0, are evaluated, while their true values are 1.6820 and 0.7660, respectively.

Table 1. Various scenarios of the numerical comparisons.

Design (n1,m1) (n2,m2) (R1,1,R1,2, . . . ,R1,m1 ) (R2,1,R2,2, . . . ,R2,m2 ) S [CS ]
m1,m2

1 (30,15) (40,20) (1∗15) (1∗20) S [1]
15,20

2 (15, 0∗14) (20, 0∗19) S [2]
15,20

3 (0∗14, 15) (0∗19, 20) S [3]
15,20

4 (7, 0∗13, 8) (10, 0∗18, 10) S [4]
15,20

5 (30,20) (40,20) (1∗10, 0∗10) (1∗10, 0∗20) S [1]
20,30

6 (10, 0∗19) (10, 0∗29) S [2]
20,30

7 (0∗19, 10) (0∗29, 10) S [3]
20,30

8 (5, 0∗18, 5) (5, 0∗28, 5) S [4]
20,30

9 (80,40) (60,30) (1∗40) (1∗30) S [1]
40,30

10 (40, 0∗39) (30, 0∗29) S [2]
40,30

11 (0∗39, 40) (0∗29, 30) S [3]
40,30

12 (20, 0∗38, 20) (15, 0∗28, 15) S [4]
40,30

13 (80,60) (60,45) (1∗20, 0∗20) (1∗15, 0∗30) S [1]
60,45

14 (20, 0∗59) (15, 0∗44) S [2]
60,45

15 (0∗59, 20) (0∗44, 15) S [3]
60,45

16 (10, 0∗58, 10) (7, 0∗43, 8) S [4]
60,45

To run a life-test experiment based on the IAPT2C with CSALTs, follow the steps in Algorithm 3.
The specification of hyper-parameter values is the main issue in a Bayesian setup. It is known

that if improper prior knowledge on the unknown subjects is available, then the objective’s posterior
density goes down to its matching LF (or PS). Consequently, it is preferable to estimate the unknown
parameters by any frequentist approach rather than the Bayesian approach due to the computational
exhaustion of the latter. So, we take (c1, c2) = (8, 2) and wi = 10, i = 1, 2, for θ and β1 also take
(µ, σ) = (0.5, 1) for β0. Alternatively, one could determine the hyper-parameter values for the unknown
parameters of interest using “past sample”. Following Section 5, we set H = 12, 000 and M = 2, 000.
Here, the MLE and MPSE are used as initial guesses for running the MCMC sampler. However, the
average estimates (AvEs), root mean squared-errors (RMSEs), mean relative absolute biases (MRABs),
average confidence lengths (ACLs), and coverage probabilities (CPs) of θ, β0, β1, λu, λ1, λ2, and Ru(x0)
are calculated.
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Algorithm 3 Sampling procedure of IAPT2C with Weibull CSALTs

Step 1. Specify the quantities k, ni, mi, T1, T2 and Ri, j for i = 1, . . . , k, j = 1, . . . ,mi.

Step 2. Set the parameter values of θ, β0 and β1.

Step 3. Obtain k random samples (of size mi) from U(0, 1), (Ui,1,Ui,2, . . . ,Ui,mi), i = 1, 2, . . . , k.

Step 4. For Ri, j with i = 1, 2, . . . , k and j = 1, 2, . . . ,mi, put Wi, j = U

(
j+

∑mi
r=mi− j+1 Ri,r

)−1

i, j for i = 1, . . . , k, j =
1, . . . ,mi.

Step 5. Set U∗i, j = 1 −
∏mi

r=mi− j+1 Wi,r.

Step 6. Use Step 5, generate PT2C samples of size mi from Weibull(θ, λi) distribution as

Xi, j =
[
− exp (− (β0 + β1si)) log

(
1 − U∗i, j

)] 1
θ
, i = 1, 2, . . . , k, j = 1, 2, . . . ,mi.

Step 7. Use Step 6, find di and d∗i at T1 and T2, respectively.

Step 8. At T1, remove the remaining sample Xi, j, i = 1, 2, . . . , k, j = di + 2, . . . ,mi.

Step 9. Obtain the first mi − di − 1 order statistics as Xdi+2, . . . , Xmi with size ni − di − 1−
∑di

j=1 Ri, j from
a truncated distribution fi (x)

[
1 − Fi

(
xdi+1

)]−1, i = 1, 2, . . . , k.

Step 10. Specify the case type of the proposed scheme such that

a. If Xi,mi < T1 (Case-I), the experiment stops at mth
i failure and this point the surviving live

items Ri,mi = ni − mi −
∑mi−1

j=1 Ri, j are removed.
b. If Xi,di < T1 < Xi,di+1 (Case-II), the experiment stops at Xi,mi with failure data Xi, j for i =

1, . . . , k, j = 1, . . . ,mi and progressive censoring (Ri,1,Ri,2, . . . ,Ri,di , 0, . . . , 0,Ri,mi). Here, the
surviving live items Ri,mi = ni − mi −

∑di
j=1 Ri, j are removed at the ending point.

c. If Xi,mi > T2 (Case-III), the experiment stops at T2 with failure data Xi, j for i = 1, . . . , k, j =
1, . . . , d∗i , where d∗i < mi, with the same progressive censoring of Case-II. Here, the remaining
live units R∗i = ni − d∗i −

∑di
j=1 Ri, j are removed at the final point.

All necessary computational algorithms are coded in R statistical programming language software
version 4.0.4 via three packages: (i) ‘coda’ package proposed by Plummer et al. [45], (ii) ‘maxLik’
package by Henningsen and Toomet [46], (iii) ‘GoFKernel’ package by Pavia [47].

The simulation results of θ, β0, β1, λu, λ1, λ2, and Ru(x0) are reported in the supplementary
material. Briefly, the first part of the simulated results, when S [1]

15,20 and S [1]
20,20 for each Ti, i = 1, 2,

values, is reported in Tables 2 and 3. In each Monte Carlo output table, for each scenario, the
corresponding estimates of each parameter based on stresses I and II are tabulated in the first and
second lines, respectively.
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Now, the following conclusions on the unknown parameters θ, β0, β1, λu, λ1, λ2, and Ru(x0) are
made:

• Both frequentist and Bayesian estimates of θ, β0, β1, λu, λ1, λ2, and Ru(x0) are showing satisfactory
behavior based on minimum RMSEs, MRABs, and ACLs as well as maximum CPs.
• As

∑k
i ni (or

∑k
i mi) increases, the RMSEs and MRABs decrease of all estimates in most cases as

expected.
• As Ti, i = 1, 2, increase, the RMSEs and MRABs of θ and β0 decrease while those associated

with others increase.
• As Ti, i = 1, 2, increases, in almost all cases, the ACLs narrow down while the CPs achieve the

specified nominal level for all unknown parameters.
• As si, i = 1, 2, grow, the RMSEs and MRABs of θ and β1 decrease while those associated with

others increase.
• As si, i = 1, 2, grow, the ACLs decreased while the CPs increase for θ and β1 unlike other

unknown parameters.
• Comparing the investigated techniques, the simulation results showed that:

– The LF (along with the MCMC-LF) method is the best for estimating θ, β0, β1, and Ru(x0).
– The LF of λu, λ1, and λ2 performs satisfactorily compared to the PS in respect of classical

estimates, while the MCMC-PS performs better compared with the MCMC-LF in respect of
Bayes’ estimates.

– Comparing the performance of the interval methodologies on the basis of smallest ACLs and
highest CPs, in most cases, it can be seen that the LF (along with MCMC-LF) method is the
best for estimating all unknown parameters except Ru(x0).

– Because prior knowledge about the unknown parameters is available, the Bayes estimates as
well as associated BCI estimates outperform those obtained using the frequentist methods.
As a result, the investigated priors are very adaptable in both nature and application.

• To appreciate the convergence of the simulated MCMC draws, Brooks–Gelman–Rubin (BGR)
diagnostic (when S [1]

15,20, (T1,T2) = (0.1, 0.3), and (s1, s2) = (0.25, 0.75) as an example) is plotted
in Figure 2. The BGR assesses the degree of convergence of Markovian sequences by comparing
the variance-within and variance-between chains for each model parameter simultaneously.
Recently, this diagnostic has also been discussed by Nassar and Elshahhat [48]. We found that
the BGR metric indicates that there are certainly no significant variations within the replicated
chains. Therefore, one can conclude that the MCMC draws are appropriately mixed.
• Ultimately, depending on different accuracy criteria, namely: RMSE and MRAB (for point

estimate) as well as ACL and CP (for interval estimate), simulation findings showed that the
proposed Bayes (using LF) method via the M-H sampler is significantly better than other
competitive methods.
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Table 2. The point estimations.

(T1,T2) S [CS ]
m1 ,m2 Par. MLE MPSE MCMC-LF MCMC-PS

AvE RMSE MRAB AvE RMSE MRAB AvE RMSE MRAB AvE RMSE MRAB

(0.1,0.3) S [1]
15,20 θ 0.7833 0.1328 0.1304 0.8396 0.1515 0.1435 0.8701 0.1391 0.1215 0.9181 0.1717 0.1772

0.7389 0.1257 0.1235 0.7826 0.1290 0.1310 0.8086 0.0983 0.0473 0.8416 0.1099 0.0840
β0 0.2568 0.4544 0.7127 0.2653 0.4899 0.7609 0.5015 0.0484 0.0467 0.5885 0.1183 0.1788

0.3094 0.6184 0.9737 0.3398 0.6570 1.0380 0.5250 0.0691 0.0715 0.6466 0.1647 0.2933
β1 0.1884 0.6093 2.4065 0.2371 0.6777 2.6750 0.1546 0.0765 0.2357 0.1772 0.1157 0.5383

0.1311 0.3065 1.2009 0.1335 0.3301 1.2968 0.1032 0.0591 0.3760 0.1392 0.0896 0.3091
λu 1.3913 0.5543 0.2703 1.4292 0.6027 0.2855 1.7127 0.1499 0.0367 1.6832 0.1006 0.0251

1.6106 0.9612 0.4237 1.7027 1.0880 0.4690 1.9445 0.3019 0.1560 1.8336 0.2402 0.0914
λ1 1.4028 0.4965 0.2414 1.4443 0.5149 0.2441 1.8737 0.2584 0.0832 1.7408 0.1728 0.0409

1.7042 0.6381 0.2465 1.7715 0.6564 0.2589 2.1714 0.3385 0.1002 2.4402 0.5979 0.0829
λ2 1.5309 0.5141 0.2215 1.6097 0.5281 0.2347 1.8397 0.2889 0.0791 2.0172 0.3712 0.0597

1.9714 0.9533 0.3075 2.0595 0.9431 0.2964 2.9168 1.3717 0.1316 2.6177 0.6466 0.1058
Ru(x0) 0.7970 0.0680 0.0724 0.8151 0.0794 0.0870 0.7885 0.0965 0.0605 0.7961 0.1005 0.0700

0.7540 0.1219 0.1215 0.7642 0.1269 0.1284 0.7362 0.0871 0.0418 0.7805 0.0839 0.0457

S [1]
20,30 θ 0.8127 0.1366 0.1320 0.8693 0.1669 0.1568 0.8181 0.0875 0.0401 0.8375 0.1057 0.0760

0.8010 0.1125 0.1112 0.8477 0.1287 0.1238 0.7710 0.0847 0.0552 0.8035 0.0984 0.0556
β0 0.3580 0.4365 0.6844 0.3627 0.4781 0.7476 0.5115 0.0494 0.0557 0.5584 0.0870 0.1298

0.5816 0.7743 1.2523 0.6209 0.8321 1.3482 0.5758 0.0874 0.1516 0.3881 0.1310 0.2481
β1 0.2561 0.6622 2.6246 0.3060 0.7336 2.9101 0.1616 0.0621 0.2436 0.1597 0.0642 0.2600

0.1303 0.3869 1.5836 0.1300 0.4163 1.7039 0.1815 0.0536 0.1796 0.1679 0.0789 0.2505
λu 1.5614 0.5546 0.2686 1.5985 0.6197 0.2968 1.7843 0.1720 0.0668 1.6971 0.1005 0.0287

2.3465 1.9292 0.7472 2.5269 2.2543 0.8524 1.5027 0.2241 0.1224 1.8111 0.1653 0.0767
λ1 1.5884 0.4691 0.2212 1.6307 0.5179 0.2430 1.8342 0.1861 0.0722 1.8584 0.1815 0.0641

2.2733 0.6735 0.2436 2.3746 0.7521 0.2677 1.8988 0.4792 0.1792 2.1361 0.3435 0.0822
λ2 1.7972 0.4865 0.2069 1.8867 0.5404 0.2271 2.0277 0.2807 0.0602 2.0123 0.2529 0.0613

2.6269 0.9203 0.2705 2.7555 1.0349 0.2963 2.2537 0.7686 0.2186 2.5297 0.6642 0.1345
Ru(x0) 0.7886 0.0704 0.0743 0.8078 0.0800 0.0870 0.7586 0.0780 0.0265 0.7491 0.0838 0.0331

0.7165 0.1647 0.1624 0.7265 0.1680 0.1669 0.7716 0.0798 0.0352 0.7773 0.0826 0.0415

(0.3,0.7) S [1]
15,20 θ 0.7170 0.1249 0.1264 0.7564 0.1341 0.1402 0.8823 0.1253 0.1009 0.8507 0.1396 0.1329

0.7197 0.1157 0.1157 0.7629 0.1267 0.1356 0.8058 0.0826 0.0449 0.8281 0.0855 0.0615
β0 0.4397 0.5166 0.8222 0.4618 0.5495 0.8680 0.4840 0.0532 0.0780 0.5468 0.0669 0.1060

0.6623 0.7447 1.1670 0.7183 0.8219 1.2889 0.5372 0.0705 0.0875 0.5844 0.1099 0.1715
β1 0.6583 0.8447 3.3263 0.7060 0.9016 3.5181 0.1405 0.0959 0.3686 0.1028 0.1172 0.5428

0.3134 0.3890 1.5435 0.3511 0.4258 1.6915 0.1911 0.0408 0.1299 0.1860 0.0573 0.1581
λu 1.4702 0.7128 0.3218 1.5097 0.8374 0.3471 1.7627 0.1292 0.0552 1.6563 0.0982 0.0401

2.0254 3.1097 0.6561 2.1920 4.0312 0.7730 1.8247 0.2141 0.0867 1.7329 0.1429 0.0416
λ1 1.4515 0.5776 0.2723 1.4895 0.6451 0.2861 1.8648 0.2280 0.0786 1.7611 0.1612 0.0404

1.8770 0.8160 0.2847 1.9836 0.9328 0.2949 2.3063 0.4154 0.0819 2.1727 0.2695 0.0629
λ2 1.5797 0.7426 0.3241 1.6548 0.8040 0.3241 2.0076 0.3252 0.0554 1.8604 0.2693 0.0720

2.1956 1.2974 0.3766 2.3967 1.5093 0.3831 2.8136 0.8642 0.1146 2.6447 0.4994 0.0855
Ru(x0) 0.7585 0.0877 0.0889 0.7731 0.0888 0.0914 0.7827 0.0919 0.0497 0.7785 0.0929 0.0536

0.7171 0.1680 0.1592 0.7296 0.1744 0.1668 0.7560 0.0710 0.0254 0.7787 0.0669 0.0378

S [1]
20,30 θ 0.7911 0.0962 0.0951 0.8336 0.1079 0.1049 0.8239 0.0759 0.0538 0.8964 0.1363 0.1447

0.7815 0.0889 0.0891 0.8272 0.0979 0.0947 0.7805 0.0825 0.0421 0.8359 0.0835 0.0693
β0 0.5416 0.3997 0.6244 0.5675 0.4393 0.6880 0.5036 0.0472 0.0426 0.5084 0.0520 0.0432

0.6540 0.5839 0.9283 0.6734 0.6366 1.0080 0.5317 0.0680 0.0834 0.5349 0.0729 0.0938
β1 0.5227 0.6628 2.6255 0.5711 0.7157 2.8350 0.2299 0.0606 0.1918 0.2485 0.0721 0.2543

0.2442 0.2898 1.1557 0.2818 0.3178 1.2627 0.2167 0.0564 0.1279 0.2086 0.0575 0.2276
λu 1.7415 0.5921 0.2678 1.7887 0.6771 0.3018 1.7074 0.1154 0.0265 1.6918 0.0973 0.0239

2.0593 1.3475 0.5182 2.1004 1.5785 0.5704 1.7515 0.1592 0.0467 1.7430 0.1414 0.0512
λ1 1.7242 0.4416 0.1996 1.7696 0.5017 0.2252 1.8140 0.1849 0.0503 1.7731 0.1387 0.0328

2.1354 0.4587 0.1626 2.2278 0.5153 0.1733 2.3832 0.5089 0.0891 2.2788 0.3154 0.0786
λ2 1.7853 0.4060 0.1680 1.8505 0.4355 0.1766 2.0401 0.2922 0.0662 2.0120 0.2384 0.0583

2.4105 0.5732 0.1729 2.6279 0.6881 0.1919 3.0023 1.0799 0.1290 2.8317 0.6005 0.1290
Ru(x0) 0.7575 0.0724 0.0738 0.7727 0.0740 0.0768 0.7711 0.0646 0.0304 0.7963 0.0856 0.0647

0.7257 0.1322 0.1265 0.7462 0.1327 0.1297 0.7462 0.0650 0.0288 0.7783 0.0625 0.0369
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Table 3. The interval estimations.

(T1,T2) S [CS ]
m1 ,m2 Par. 95% ACI-LF 95% ACI-PS 95% BCI-LF 95% BCI-PS

ACL CP ACL CP ACL CP ACL CP

(0.1,0.3) S [1]
15,20 θ 0.5560 0.952 0.5660 0.948 0.3596 0.999 0.3897 0.999

0.4510 0.960 0.4881 0.955 0.2553 0.999 0.2892 0.999
β0 2.0516 0.978 2.0764 0.966 0.1610 0.985 0.2462 0.975

3.0210 0.961 3.1012 0.944 0.2089 0.982 0.2637 0.980
β1 3.2354 0.916 3.2354 0.914 0.2431 0.979 0.2526 0.975

1.4690 0.929 1.5075 0.925 0.2013 0.987 0.1947 0.985
λu 2.5371 0.905 2.5571 0.893 0.4347 0.948 0.5659 0.932

4.6342 0.889 5.0269 0.891 0.4996 0.936 0.3104 0.929
λ1 2.2143 0.914 2.3832 0.911 0.5059 0.948 0.6173 0.941

2.7200 0.876 2.9487 0.871 1.4813 0.927 1.0118 0.925
λ2 2.2231 0.883 2.4401 0.880 0.7639 0.939 0.8845 0.927

3.4784 0.916 3.7948 0.910 2.2483 0.949 1.9400 0.934
Ru(x0) 0.2794 0.916 0.2794 0.918 0.2444 0.999 0.2511 0.999

0.5673 0.936 0.5574 0.946 0.2130 0.999 0.1984 0.999

S [1]
20,30 θ 0.5298 0.954 0.5798 0.950 0.2880 0.999 0.2409 0.999

0.4725 0.958 0.5090 0.958 0.2752 0.999 0.2806 0.999
β0 1.9946 0.954 2.0821 0.937 0.1547 0.984 0.2373 0.980

2.9102 0.971 2.9843 0.952 0.1604 0.988 0.2024 0.978
β1 3.0813 0.942 3.1816 0.944 0.1739 0.989 0.2299 0.991

1.4152 0.969 1.4500 0.970 0.1794 0.994 0.1792 0.990
λu 2.6788 0.927 2.8572 0.915 0.3789 0.978 0.3131 0.937

6.4786 0.926 7.1540 0.902 0.4694 0.976 0.3298 0.933
λ1 2.0886 0.917 2.0886 0.915 0.4951 0.951 0.3890 0.950

2.0364 0.926 2.2016 0.918 1.0571 0.956 1.0057 0.967
λ2 2.0727 0.923 2.0727 0.911 0.6826 0.961 0.6980 0.960

2.5857 0.913 2.8236 0.913 2.1528 0.947 1.8802 0.942
Ru(x0) 0.2976 0.918 0.2838 0.922 0.2201 0.999 0.1824 0.999

0.5899 0.941 0.5812 0.943 0.1988 0.999 0.1951 0.999

(0.3,0.7) S [1]
15,20 θ 0.3919 0.957 0.4224 0.953 0.3395 0.999 0.3355 0.999

0.3766 0.965 0.4091 0.959 0.2376 0.999 0.2405 0.999
β0 1.7094 0.984 1.7625 0.959 0.1766 0.988 0.1787 0.960

2.7713 0.985 2.8548 0.968 0.2421 0.985 0.2043 0.975
β1 2.8183 0.975 2.8960 0.935 0.2072 0.980 0.2552 0.985

1.3741 0.974 1.4215 0.944 0.1415 0.985 0.1833 0.986
λu 2.1840 0.914 2.3305 0.911 0.3548 0.960 0.3232 0.958

5.5395 0.910 6.2470 0.903 0.5024 0.962 0.4191 0.955
λ1 1.6722 0.932 1.7866 0.930 0.5508 0.966 0.4795 0.961

1.9681 0.889 2.1854 0.885 1.1993 0.934 0.7921 0.931
λ2 1.6436 0.900 1.7969 0.892 0.7994 0.948 0.7396 0.931

2.6692 0.926 3.1250 0.925 2.3645 0.963 1.4310 0.959
Ru(x0) 0.3009 0.926 0.2944 0.928 0.2354 0.999 0.2343 0.999

0.5680 0.945 0.5557 0.946 0.1769 0.999 0.1662 0.999

S [1]
20,30 θ 0.4011 0.960 0.4279 0.955 0.2133 0.999 0.2925 0.999

0.3664 0.968 0.3928 0.961 0.2310 0.999 0.2300 0.999
β0 1.6277 0.985 1.6672 0.971 0.1633 0.985 0.2002 0.975

2.4509 0.952 2.4873 0.949 0.2062 0.978 0.1557 0.973
β1 2.5975 0.981 2.6477 0.952 0.1781 0.982 0.1881 0.988

1.2267 0.979 1.2510 0.961 0.1641 0.986 0.2202 0.986
λu 2.4141 0.924 2.5375 0.913 0.3384 0.973 0.2961 0.962

4.7838 0.918 4.9533 0.907 0.4156 0.966 0.4161 0.959
λ1 1.8599 0.948 1.9577 0.934 0.3982 0.981 0.4704 0.963

1.8658 0.930 1.9847 0.926 1.3222 0.967 1.0281 0.955
λ2 1.5677 0.931 1.6583 0.922 0.6432 0.961 0.7273 0.952

2.4496 0.943 2.7841 0.941 2.6520 0.978 2.0082 0.961
Ru(x0) 0.2901 0.931 0.2814 0.939 0.1687 0.999 0.2011 0.999

0.5186 0.947 0.4934 0.948 0.1789 0.999 0.1602 0.999
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Figure 2. The BGR diagnostic plots for MCMC draws in Monte Carlo simulation.

7. Real-life applications

We analyzed two data sets to determine the practicality of the inferred strategies. The functionality
and user-friendliness of these examples have validated the effectiveness of the suggested techniques in
practical usage.

7.1. M00071 white OLED data

This application deals with the analysis of the lifetime (in hours) of the M00071 white organic
light-emitting diode (OLED) mixed with different colors; see Zhang et al. [49]. Recently, OLED data
was also discussed by Lin et al. [50] and Nassar et al. [8]. The calculations involved subtracting 1500
and 500 from the lifetime points at s1 and s2, and then dividing the results by their standard deviations.
Table 4 presents the newly updated OLED information. According to Zhang et al. [49], there are two
stress levels, namely s1 = 9.64 mA and s2 = 17.09 mA. At each stress level, the MLEs with their
standard-errors (SEs) of θ and λi, i = 1, 2, as well as the Kolmogorov-Smirnov (KS) with its P-value
are calculated; see Table 4. This result indicates that the Weibull distribution fits the OLED data set
well. In order to prove the existence and uniqueness of the MLEs θ̂ and λ̂i, i = 1, 2, the contours
of θ and λi, i = 1, 2, are provided in Figure 3. It indicates that the MLEs of θ and λi, i = 1, 2,
exist and are also unique. The likelihood ratio (LR) test can be used to evaluate the assumption of a
common shape parameter across data collected at different stress levels. The test statistic in this case is
Λ∗ = 2(ℓ1 + ℓ2 − ℓc), where ℓ1 and ℓ2 correspond to the likelihood values acquired at stress levels 1
and 2, respectively, and ℓc is the likelihood value achieved by fitting a model with a common shape
parameter θ. The distribution of Λ∗ is approximately chi-square with 1 degree of freedom. From the
original data, we have Λ∗ = 1.283 with P-value=0.257. This result indicates that shape parameters do
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not differ significantly for any significance level less than 0.257.

Table 4. The OLED data set, MLEs(SEs), and KS(P-value).

Stress Failure times MLE(SE) KS(P-value)

θ λ

9.46 mA 0.5050, 1.5419, 1.5831, 2.3062, 2.4301, 2.8922(0.7842) 0.0540(0.0505) 0.1778(0.8569)

2.8639, 2.9575, 3.1132, 3.6076, 3.6379

17.09 mA 0.4591, 0.8581, 0.8925, 0.9793, 1.2915, 1.8965(0.4713) 0.2922(0.1524) 0.1698(0.8906)

1.6036, 1.7619, 2.7852, 2.8557, 3.3995
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Figure 3. Contour plot of θ and λi, i = 1, 2, under OLED data.

Now, from the complete failure times at both stress levels si, i = 1, 2, two IAPT2C samples using
mi = 5, i = 1, 2, Ri, j = 1, j = 1, . . . ,mi, and some choices of Ti,1 and Ti,2, i = 1, 2, are generated and
reported in Table 5.

Table 5. Improved Type-II adaptive progressively censored samples from the OLED data.

Stress Generated Samples Ti,1 Ti,2 R∗i T ∗i

9.46 mA 0.5050, 1.5831, 2.4301, 2.9575 2.5 3 3 3

17.09 mA 0.4591, 0.8925, 1.2915, 1.6036, 1.7619 1 2 3 1.7619

Using information in Table 5, the various estimations of θ, β0, β1, λu, λ1, λ2, and Ru(x0) are
computed. Using the design stress level su = 5 mA, the different estimates of λu and the RF (for
x0 = 1) are obtained. Following Section 5, the first 5000 samples are removed out of 30,000 MCMC
draws. Furthermore, we computed all Bayes estimates using non-informative priors. We chose to
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use 0.001 for all the hyper-parameters in our calculations. However, Tables 6 and 7 display the
calculated classical/Bayes estimates (along their SEs) and 95% asymptotic/credible interval estimates
(along their lengths) of θ, β0, β1, λu, λ1, λ2, and Ru(x0). Since Bayes’ findings are calculated without
any additional information, Table 6 demonstrates the similarity between the frequentist and Bayes
estimates. Additionally, BCIs of all parameters perform better than others; see Table 7. Moreover, in
terms of the lowest SE and shortest interval length values, the Bayes’ results reported in Tables 6
and 7 showed that Bayesian point (or credible) estimates outperformed compared to others. Some
important statistics of θ, β0, β1, λu, λ1, λ2, and Ru(x0) are computed and provided in Table 8.

Table 6. Point estimates from OLED data.

Par. MLE MPSE MCMC-LF MCMC-PS

Estimate SE Estimate SE Estimate SE Estimate SE

β0 -4.5222 1.6212 -5.9221 2.2339 -4.5198 0.0990 -4.5219 0.0991
β1 0.1817 0.0976 0.2378 0.1231 0.1757 0.0251 0.1637 0.0340
θ 2.2224 0.6483 2.9023 1.0272 2.2045 0.0992 2.2107 0.0990
λu 0.0270 0.0315 0.0270 0.0448 0.0264 0.0035 0.0249 0.0043
λ1 0.0606 0.0487 0.0606 0.0719 0.0588 0.0131 0.0530 0.0158
λ2 0.2426 0.1299 0.2426 0.1702 0.2368 0.0930 0.1990 0.1023

Ru(x0) 0.9734 0.0307 0.9734 0.0436 0.9739 0.0035 0.9754 0.0042

Table 7. Asymptotic/credible interval estimates under OLED data.

Par. ACI-LF BCI-LF

Lower Upper Length Lower Upper Length

β0 -7.6996 -1.3448 6.3548 -4.7211 -4.3292 0.3919
β1 -0.0095 0.3730 0.3825 0.1253 0.2199 0.0946
θ 0.9518 3.4930 2.5412 2.0168 2.3939 0.3772
λu 0.0000 0.0887 0.0887 0.0199 0.0337 0.0138
λ1 0.0000 0.1560 0.1560 0.0361 0.0866 0.0505
λ2 0.0000 0.4972 0.4972 0.0947 0.4533 0.3586

Ru(x0) 0.9133 0.9992 0.0859 0.9669 0.9803 0.0134

ACI-PS BCI-PS

β0 -8.9006 -0.1439 8.7566 -4.7225 -4.3258 0.3966
β1 -0.0596 0.4230 0.4826 0.1019 0.2157 0.1138
θ 0.2090 4.2357 4.0267 2.0152 2.4062 0.3910
λu 0.0000 0.0887 0.0887 0.0178 0.0328 0.0150
λ1 0.0000 0.1560 0.1560 0.0290 0.0827 0.0536
λ2 0.0000 0.4972 0.4972 0.0635 0.4219 0.3584

Ru(x0) 0.8880 0.9881 0.1001 0.9677 0.9823 0.0146
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Table 8. Vital statistics of MCMC draws under OLED data.

Par. Mean Median Mode St.D Skewness

MCMC-LF

β0 -4.5198 -4.5198 -4.3307 0.0990 -0.0156
β1 0.1757 0.1773 0.1714 0.0243 -0.2656
θ 2.2045 2.2043 2.0920 0.0976 -0.0092
λu 0.0264 0.0263 0.0310 0.0035 0.2271
λ1 0.0588 0.0579 0.0666 0.0129 0.3917
λ2 0.2368 0.2249 0.2463 0.0929 0.8489

Ru(x0) 0.9739 0.9740 0.9695 0.0034 -0.2163

MCMC-PS

β0 -4.5219 -4.5223 -4.5344 0.0991 -0.0295
β1 0.1637 0.1656 0.1800 0.0289 -0.3703
θ 2.2107 2.2096 2.1644 0.0983 -0.0004
λu 0.0249 0.0248 0.0264 0.0038 0.2006
λ1 0.0530 0.0520 0.0589 0.0138 0.4247
λ2 0.1990 0.1839 0.2326 0.0926 0.9968

Ru(x0) 0.9754 0.9755 0.9739 0.0037 -0.1894

Furthermore, to show the convergence of drawn samples from both types of 25,000 MCMC variates,
the trace and marginal density plots (with their histograms using the Gaussian kernel) of θ, β0, β1, λu,
λ1, λ2, and Ru(x0) are displayed in Figure 4. In each trace (or density) plot, the Bayes estimate of
each subject is displayed as a horizontal solid line, while its BCI limits are represented with horizontal
dotted lines. It indicates that all the generated samples collected from the MCMC-LF (or MCMC-PS)
sampler converged satisfactorily. Furthermore, Figure 4 shows that the generated variates of θ and β0

are fairly symmetric, those of β1 and Ru(x0) are negatively skewed, while those of λu, λ1 and λ2 are
positively skewed. Also, Figure 4 supports our numerical findings presented in Table 8. In Figure 5,
based on both stress (9.46 mA and 17.09 mA) data, the plots of fitted and empirical RFs of the Weibull
life distribution using the proposed methodologies are provided.

7.2. Pump motor data

This application considers an engineering data set to examine the practical utility of the proposed
methodologies. This data demonstrates the operational lifespan (in hours) of a pump motor. It was
originally reported by the ReliaSoft website
(http://www.reliasoft.com/newsletter/1q2002/qalt.htm) and later analyzed by Dey and
Nassar [9]. The data were obtained based on two specified stress levels of the liquid density, namely
s1 = 1.0 g/mL and s2 = 1.4 g/mL, where the failure times at each stress level are recorded. For
computational convenience, we simplified the numbers by subtracting 500 from each data point and
then dividing the result by 1000. This subtraction is done for computational purposes, because
dealing with the same actual time points for the pump motor is not appropriate. The transformed data
values are listed in Table 9.
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(a) MCMC-LF approach (b) MCMC-PS approach
Figure 4. Density (left) and histograms (right) for MCMC-LF and -PS drawn from OLED
data.
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Figure 5. The fitted Weibull RFs from OLED data.

Table 9. Summary fitting under pump motor data.

Stress Failure times MLE(SE) KS(P-value)

θ λ

1.0 g/mL 0.92 1.36 1.79 1.90 2.38 5.1812(1.3639) 0.0143(0.0176) 0.3223(0.2499)
2.40 2.50 2.50 2.50 2.50

1.4 g/mL 0.400 0.630 0.700 0.895 1.160 2.3305(0.5921) 0.4592(0.2015) 0.1896(0.8015)
1.180 1.330 1.960 1.990 2.080

Table 9 provides evidence that the Weibull model fits the pump motor data sets well. Contour plots,
based on two stress levels, are plotted in Figure 6. It indicates that the MLEs θ̂ and λ̂i, i = 1, 2, exist
and are also unique. Using the LR test, we compute Λ∗ = 4.179 with P-value= 0.041. This finding
indicates that the shape parameters do not differ significantly at any significance level lower than 0.041.
Although the P-value is small, we can continue our analysis by assuming common shape parameters,
especially for illustration purposes, taking into account the lack of available data sets in the literature.
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Figure 6. Contour plot of θ and λi, i = 1, 2, under pump motor data.
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Using mi = 5, i = 1, 2, and Ri, j = 1, j = 1, . . . ,mi, two IAPT2C samples, for various choices
of (Ti,1,Ti,1), i = 1, 2, are gathered; see Table 10. The calculated estimates of θ, β0, β1, λu, λ1, λ2

and Ru(x0), based on the data sets reported in Table 10, are obtained. Also, by running the MCMC
algorithm 30,000 times (when M = 5000), using non-informative priors, the Bayesian calculations
of the considered parameters are developed. The estimated RF (for x0 = 1) using both classical and
Bayes methods, when the normal stress level su is taken as 0.75 g/mL, is obtained. All point and
interval estimates of θ, β0, β1, λu, λ1, λ2 and Ru(x0) are presented in Tables 11 and 12, respectively.
These tables showed that Bayesian point (or interval) estimates perform better than other frequentist
point (or interval) results in terms of minimum SEs and interval lengths. Several statistics for MCMC
posterior distributions of θ, β0, β1, λu, λ1, λ2 and Ru(x0) are also computed; see Table 13. In this
table, the statistics MCMC drawn based on LF and PS approaches are listed in the first and second
rows, respectively.

The density and histogram plots of θ, β0, β1, λu, λ1, λ2 and Ru(x0) from MCMC-LF and MCMC-PS
approaches are displayed in Figure 7. It represents that the offered MCMC-LF (or MCMC-PS) sampler
converges adequately. It is also noted, for both MCMC-LF and -PS approaches, that variates of θ, β0,
β1 are fairly symmetric; the generated posterior estimates of λu, λ1, λ2 are positively skewed, while
the generated posterior estimates of Ru(x0) are negatively skewed. Figure 8 shows the plots of fitted
and empirical RFs (for 1.0 g/mL and 1.4 g/mL data sets) using the computed estimates based on each
considered method.

Table 10. Improved Type-II adaptive progressively censored samples from the pump motor
data.

Stress Generated Samples T1 T2 R∗i T ∗i

1.0 g/mL 0.92 1.79 2.38 2.40 2.50 2(2) 2.6 3 2.5
1.4 g/mL 0.92 1.79 1.90 2.38 1(1) 2.4 5 2.4

Table 11. Point estimates from pump motor data.

Par. MLE MPSE MCMC-LF MCMC-PS

Estimate SE Estimate SE Estimate SE Estimate SE

β0 -3.1106 2.2293 -4.7027 3.0325 -4.4493 0.1225 -4.4678 0.1126
β1 -0.4820 1.6496 -0.5106 1.9164 0.2194 0.1082 0.1993 0.1038
θ 3.6623 1.1021 5.3652 2.0576 2.2777 0.1131 2.2636 0.1076
λu 0.0125 0.0336 0.0125 0.0557 0.0139 0.0132 0.0134 0.0136
λ1 0.0130 0.0636 0.0130 0.1141 0.0147 0.0460 0.0141 0.0465
λ2 0.0140 0.2516 0.0140 0.4432 0.0161 0.2265 0.0154 0.2272

Ru(x0) 0.9734 0.0151 0.9734 0.0250 0.9862 0.0129 0.9867 0.0134
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Table 12. Asymptotic/credible interval estimates under pump motor data.

Par. ACI-LF BCI-LF

Lower Upper Length Lower Upper Length

β0 -8.8916 -0.1528 8.7388 -4.6433 -4.2662 0.3771
β1 -3.0513 3.4148 6.4661 0.0241 0.4259 0.4018
θ 0.0624 4.3824 4.3200 2.0826 2.4716 0.3890
λu 0.0000 0.0929 0.0929 0.0108 0.0176 0.0068
λ1 0.0000 0.1853 0.1853 0.0110 0.0192 0.0082
λ2 0.0000 0.7357 0.7357 0.0114 0.0222 0.0108

Ru(x0) 0.9438 0.9993 0.0555 0.9826 0.9893 0.0067

ACI-PS BCI-PS

β0 -10.466 1.4214 11.887 -4.6631 -4.2771 0.3860
β1 -3.5743 3.9378 7.5121 0.0092 0.4035 0.3943
θ 0.0000 6.2551 6.2551 2.0711 2.4632 0.3921
λu 0.0000 0.1361 0.1361 0.0105 0.0171 0.0066
λ1 0.0000 0.2843 0.2843 0.0107 0.0186 0.0079
λ2 0.0000 1.1112 1.1112 0.0110 0.0215 0.0105

Ru(x0) 0.9243 0.9987 0.0744 0.9831 0.9896 0.0065

Table 13. Vital statistics of MCMC drawn under pump motor data.

Par. Mean Median Mode St.D Skewness

MCMC-LF

β0 -4.4493 -4.4503 -4.3087 0.0984 -0.0465
β1 0.2194 0.2186 0.3569 0.1014 0.1050
θ 2.2777 2.2782 2.4168 0.0986 -0.0280
λu 0.0139 0.0138 0.0176 0.0017 0.3207
λ1 0.0147 0.0146 0.0192 0.0021 0.3821
λ2 0.0161 0.0159 0.0222 0.0028 0.4873

Ru(x0) 0.9862 0.9863 0.9826 0.0017 -0.3157

MCMC-PS

β0 -4.4678 -4.4681 -4.3706 0.0986 -0.0195
β1 0.1993 0.1982 0.0003 0.1023 0.1723
θ 2.2636 2.2627 2.3650 0.0994 0.0827
λu 0.0134 0.0133 0.0126 0.0017 0.4300
λ1 0.0141 0.0139 0.0126 0.0020 0.5062
λ2 0.0154 0.0151 0.0126 0.0027 0.6213

Ru(x0) 0.9867 0.9868 0.9874 0.0016 -0.4247
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(a) MCMC-LF approach (b) MCMC-PS approach

Figure 7. Density (left) and histograms (right) for MCMC-LF and -PS drawn from pump
motor data.
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Figure 8. The fitted Weibull RFs from pump motor data.

8. Conclusions and recommendations

In this paper, through a constant-stress accelerated life test model based on improved Type-II
adaptive progressive censoring, various estimation challenges for the Weibull parameters of lifetime
have been investigated. Assuming a log-linear acceleration model, different point estimations of the
Weibull’s parameters and its reliability at normal use conditions have been studied using two classical
methods, namely the maximum likelihood and the maximum product of spacings approaches. The
approximate confidence intervals of all unknown subjects have been obtained using the asymptotic
properties of the two frequentist estimation methods. Also, Bayesian point and interval estimators
have been studied using both likelihood and the product of spacings functions. It has been observed
that Bayes’ results cannot be acquired in explicit expressions; therefore, the Metropolis–Hastings
technique has been employed to get the required estimates. To highlight the behavior of the various
estimates proposed in this study, a wide simulation comparison has been implemented. Additionally,
two actual sets of data were used to show how the different approaches can be used. These
applications support the numerical findings of the proposed estimators obtained from simulation
studies in terms of the estimated standard errors. Generally, Bayes’ setup using the likelihood
function has been recommended to evaluate the shape parameter and reliability function under normal
use conditions, while Bayes estimates using the product of spacings function have also been
recommended to evaluate the scale parameters, which behave well compared with their counterparts.
For future work, it is of interest to investigate the estimation methods for Weibull distribution using
other kinds of accelerated life tests, for example, step-stress-accelerated life tests using improved
Type-II adaptive progressive censoring data
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