This paper is concerned with the attraction-repulsion chemotaxis system (1.1) define on a bounded domain $ \Omega \subset \mathbb{R}^N(N\geq 1) $ with no-flux boundary conditions. The source function $ f $ in this system is a smooth function $ f $ that satisfies $ f(u)\leq a-bu^\eta $ for $ u\geq0 $. It is proven that $ \eta\geq1 $ is sufficient to ensure the boundedness of the solution when $ r < \frac{4(N+1)}{N(N+2)} $ is in the balance case $ \chi\alpha = \xi\gamma $, which improve the relevant results presented in papers such as Li and Xiang (2016), Xu and Zheng (2018), Xie and Zheng (2021), and Tang, Zheng and Li (2023).
Citation: Wanjuan Du. A further study on an attraction-repulsion chemotaxis system with logistic source[J]. AIMS Mathematics, 2024, 9(7): 16924-16930. doi: 10.3934/math.2024822
This paper is concerned with the attraction-repulsion chemotaxis system (1.1) define on a bounded domain $ \Omega \subset \mathbb{R}^N(N\geq 1) $ with no-flux boundary conditions. The source function $ f $ in this system is a smooth function $ f $ that satisfies $ f(u)\leq a-bu^\eta $ for $ u\geq0 $. It is proven that $ \eta\geq1 $ is sufficient to ensure the boundedness of the solution when $ r < \frac{4(N+1)}{N(N+2)} $ is in the balance case $ \chi\alpha = \xi\gamma $, which improve the relevant results presented in papers such as Li and Xiang (2016), Xu and Zheng (2018), Xie and Zheng (2021), and Tang, Zheng and Li (2023).
[1] | X. He, M. Tian, S. Zheng, Large time behavior of solutions to a quasilinear attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal. Real, 54 (2020), 103095. https://doi.org/10.1016/j.nonrwa.2020.103095 doi: 10.1016/j.nonrwa.2020.103095 |
[2] | K. Lin, C. Mu, L. Wang, Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105–124. https://doi.org/10.1016/j.jmaa.2014.12.052 doi: 10.1016/j.jmaa.2014.12.052 |
[3] | X. Li, Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165–198. https://doi.org/10.1093/imamat/hxv033 doi: 10.1093/imamat/hxv033 |
[4] | G. Ren, B. Liu, Global dynamics for an attraction-repulsion chemotaxis model with logistic source, J. Differ. Equations, 268 (2020), 4320–4373. https://doi.org/10.1016/j.jde.2019.10.027 doi: 10.1016/j.jde.2019.10.027 |
[5] | S. Shi, Z. Liu, H. Jin, Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source, Kinet. Relat. Mod., 10 (2017), 855–878. https://doi.org/10.3934/krm.2017034 doi: 10.3934/krm.2017034 |
[6] | H. Tang, J. Zheng, K. Li, Global bounded classical solution for an attraction-repulsion chemotaxis system, Appl. Math. Lett., 138 (2023), 108532. https://doi.org/10.1016/j.aml.2022.108532 doi: 10.1016/j.aml.2022.108532 |
[7] | Y. Tao, Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Mod. Meth. Appl. S., 23 (2013), 1–36. https://doi.org/10.1142/S0218202512500443 doi: 10.1142/S0218202512500443 |
[8] | M. Tian, X. He, S. Zheng, Global boundedness in quasilinear attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal. Real, 30 (2016), 1–15. https://doi.org/10.1016/j.nonrwa.2015.11.004 doi: 10.1016/j.nonrwa.2015.11.004 |
[9] | Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equations, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019 |
[10] | W. Wang, M. Zhuang, S. Zheng, Positive effects of repulsion on boundedness in a fully parabolic attraction-repulsion chemotaxis system with logistic source, J. Differ. Equations, 264 (2018), 2011–2027. https://doi.org/10.1016/j.jde.2017.10.011 doi: 10.1016/j.jde.2017.10.011 |
[11] | Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259–292. https://doi.org/10.1016/j.jmaa.2016.03.061 doi: 10.1016/j.jmaa.2016.03.061 |
[12] | J. Xie, J. Zheng, A new result on existence of global bounded classical solution to a attraction-repulsion chemotaxis system with logistic source, J. Differ. Equations, 298 (2021), 159–181. https://doi.org/10.1016/j.jde.2021.06.040 doi: 10.1016/j.jde.2021.06.040 |
[13] | J. Xu, Z. Liu, S. Shi, Large time behavior of solutions for the attraction-repulsion Keller-Segel system with large initial data, Appl. Math. Lett., 87 (2019), 13–19. https://doi.org/10.1016/j.aml.2018.07.025 doi: 10.1016/j.aml.2018.07.025 |
[14] | P. Xu, S. Zheng, Global boundedness in an attraction-repulsion chemotaxis system with logistic source, Appl. Math. Lett., 83 (2018), 1–6. https://doi.org/10.1016/j.aml.2018.03.007 doi: 10.1016/j.aml.2018.03.007 |
[15] | H. Yu, Q. Guo, S. Zheng, Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system, Nonlinear Anal. Real, 34 (2017), 335–342. https://doi.org/10.1016/j.nonrwa.2016.09.007 doi: 10.1016/j.nonrwa.2016.09.007 |