It is well-known fact that fuzzy interval-valued functions (F-I-V-Fs) are generalizations of interval-valued functions (I-V-Fs), and inclusion relation and fuzzy order relation on interval space and fuzzy space are two different concepts. Therefore, by using fuzzy order relation (FOR), we derive inequalities of Hermite-Hadamard (H·H) and Hermite-Hadamard Fejér (H·H Fejér) like for harmonically convex fuzzy interval-valued functions by applying fuzzy Riemann integrals. Moreover, we establish the relation between fuzzy integral inequalities and fuzzy products of harmonically convex fuzzy interval-valued functions. The outcomes of this study are generalizations of many known results which can be viewed as an application of a defined new version of inequalities.
Citation: Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti. Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions[J]. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
It is well-known fact that fuzzy interval-valued functions (F-I-V-Fs) are generalizations of interval-valued functions (I-V-Fs), and inclusion relation and fuzzy order relation on interval space and fuzzy space are two different concepts. Therefore, by using fuzzy order relation (FOR), we derive inequalities of Hermite-Hadamard (H·H) and Hermite-Hadamard Fejér (H·H Fejér) like for harmonically convex fuzzy interval-valued functions by applying fuzzy Riemann integrals. Moreover, we establish the relation between fuzzy integral inequalities and fuzzy products of harmonically convex fuzzy interval-valued functions. The outcomes of this study are generalizations of many known results which can be viewed as an application of a defined new version of inequalities.
[1] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA monographs, Victoria University, 2004. |
[2] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Elsevier, 1992. |
[3] | F. X. Chen, A note on Hermite-Hadamard inequalities for products of convex functions, J. Appl. Math., 2013 (2013), 935020. doi: 10.1155/2013/935020. doi: 10.1155/2013/935020 |
[4] | S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones, 34 (2015), 323-341. doi: 10.4067/S0716-09172015000400002. doi: 10.4067/S0716-09172015000400002 |
[5] | S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56. doi: 10.1016/0022-247X(92)90233-4. doi: 10.1016/0022-247X(92)90233-4 |
[6] | S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341. |
[7] | B. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Collect., 6 (2003), 1-9. |
[8] | J. R. Wang, X. Z. Li, C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 655-666. doi: 10.36045/bbms/1382448186. doi: 10.36045/bbms/1382448186 |
[9] | M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craioval Math. Comput. Sci. Ser., 47 (2020), 193-213. |
[10] | M. Z. Sarikaya, H. Yildirim, On generalization of the Riesz potential, Indian J. Math. Math. Sci., 3 (2007), 231-235. |
[11] | F. Ertugral, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 113 (2019), 3115-3124. doi: 10.1007/s13398-019-00680-x. doi: 10.1007/s13398-019-00680-x |
[12] | K. L. Tseng, S. R. Hwang, New Hermite-Hadamard-type inequalities and their applications, Filomat, 30 (2016), 3667-3680. doi: 10.2298/FIL1614667T. doi: 10.2298/FIL1614667T |
[13] | R. E. Moore, Interval analysis, Prentice Hall, Englewood Cliffs, 1966. |
[14] | Y. Chalco-Cano, A. Flores-Franulič, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457-472. doi: 10.1590/S1807-03022012000300002. |
[15] | Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293-3300. doi: 10.1007/s00500-014-1483-6. |
[16] | H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306-1318. doi: 10.1007/s40314-016-0396-7. doi: 10.1007/s40314-016-0396-7 |
[17] | T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31-47. doi: 10.1016/j.fss.2017.02.001. doi: 10.1016/j.fss.2017.02.001 |
[18] | T. M. Costa, H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110-125. doi: 10.1016/j.ins.2017.08.055. |
[19] | A. Flores-Franulič, Y. Chalco-Cano, H. Román-Flores, An Ostrowski type inequality for interval-valued functions, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), (2013), 1459-1462. doi: 10.1109/IFSA-NAFIPS.2013.6608617. |
[20] | H. Román-Flores, Y. Chalco-Cano, G. N. Silva, A note on Gronwall type inequality for interval-valued functions, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), (2013), 1455-1458. doi: 10.1109/IFSA-NAFIPS.2013.6608616. |
[21] | E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set valued functions, Results Math., 32 (1997), 332-337. doi: 10.1007/BF03322144. doi: 10.1007/BF03322144 |
[22] | F. C. Mitroi, K. Nikodem, S. Wasowicz, Hermite-Hadamard inequalities for convex set-valued functions, Demonstr. Math., 46 (2013), 655-662. doi: 10.1515/dema-2013-0483. doi: 10.1515/dema-2013-0483 |
[23] | K. Nikodem, J. L. Sánchez, L. Sánchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aeterna, 4 (2014), 979-987. |
[24] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equations, 2021 (2021), 6-20. doi: 10.1186/s13662-021-03245-8. doi: 10.1186/s13662-021-03245-8 |
[25] | M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. doi: 10.3390/sym13040673. doi: 10.3390/sym13040673 |
[26] | M. B. Khan, P. O. Mohammed, M. A. Noor, A. M. Alsharif, K. I. Noor, New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS Math., 6 (2021), 10964-10988. doi: 10.3934/math.2021637. doi: 10.3934/math.2021637 |
[27] | M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403-1418. doi: 10.2991/ijcis.d.210409.001. doi: 10.2991/ijcis.d.210409.001 |
[28] | M. B. Khan, L. Abdullah, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-h-convex fuzzy-interval-valued functions, Int. J. Comput. Intell. Syst., 14 (2021), 155. doi: 10.1007/s44196-021-00004-1. doi: 10.1007/s44196-021-00004-1 |
[29] | P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 2021 (2021), 1-15. doi: 10.1007/s40747-021-00379-w. doi: 10.1007/s40747-021-00379-w |
[30] | G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 2021 (2021), 1809-1822. doi: 10.2991/ijcis.d.210620.001. doi: 10.2991/ijcis.d.210620.001 |
[31] | M. B. Khan, P. O. Mohammed, M. A. Noor, K. M. Abualnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552-6580. doi: 10.3934/mbe.2021325. doi: 10.3934/mbe.2021325 |
[32] | M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math. Inf. Sci., 15 (2021), 459-470. doi: 10.18576/amis/150408 |
[33] | M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. L. G. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 175. doi: 10.3390/axioms10030175. doi: 10.3390/axioms10030175 |
[34] | P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, On strongly generalized preinvex fuzzy mappings, J. Math., 2021 (2021), 6657602. doi: 10.1155/2021/6657602. doi: 10.1155/2021/6657602 |
[35] | M. B. Khan, M. A. Noor, K. I. Noor, A. T. Ab Ghani, L. Abdullah, Extended perturbed mixed variational-like inequalities for fuzzy mappings, J. Math., 2021 (2021), 6652930. doi: 10.1155/2021/6652930. doi: 10.1155/2021/6652930 |
[36] | M. B. Khan, M. A. Noor, K. I. Noor, H. Almusawa, K. S. Nisar, Exponentially preinvex fuzzy mappings and fuzzy exponentially mixed variational-like inequalities, Int. J. Anal. Appl., 19 (2021), 518-541. doi: 10.28924/2291-8639-19-2021-518. doi: 10.28924/2291-8639-19-2021-518 |
[37] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856-1870. doi: 10.2991/ijcis.d.210616.001. doi: 10.2991/ijcis.d.210616.001 |
[38] | B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581-599. doi: 10.1016/j.fss.2004.08.001. doi: 10.1016/j.fss.2004.08.001 |
[39] | R. Goetschel Jr., W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst., 18 (1986), 31-43. doi: 10.1016/0165-0114(86)90026-6. |
[40] | O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301-317. doi: 10.1016/0165-0114(87)90029-7. |
[41] | U. W. Kulish, W. L. Miranker, Computer arithmetic in theory and practice, New York: Academic Press, 1981. |
[42] | İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942. |
[43] | M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B. Sci. Bull., Seri. A, 77 (2015), 5-16. |
[44] | M. B. Khan, M. A. Noor, P. O. Mohammed, J. L. G. Guirao, K. I. Noor, Some integral inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 14 (2021), 158. doi: 10.1007/s44196-021-00009-w. doi: 10.1007/s44196-021-00009-w |
[45] | M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. L. Guirao, Fuzzy mixed variational-like and integral inequalities for strongly preinvex fuzzy mappings, Symmetry, 13 (2021), 1816. doi: 10.3390/sym13101816. doi: 10.3390/sym13101816 |