Let $ s \geq 1 $ be a fixed integer. In this paper, we focus on generating cyclic codes over the ring $ \mathcal{R}(\alpha_1, \alpha_2, \ldots, \alpha_s) $, where $ \alpha_i \in \mathbb{F}_q\backslash \{0\} $, $ 1 \leq i \leq s $, by using the Gray map that is defined by the idempotents. Moreover, we describe the process to generate an idempotent by using the formula (2.1). As applications, we obtain both optimal and new quantum codes. Additionally, we solve the DNA reversibility problem by introducing $ \mathbb{F}_q $ reversibility. The aim to introduce the $ \mathbb{F}_q $ reversibility is to describe IUPAC nucleotide codes, and consequently, 5 IUPAC DNA bases are considered instead of 4 DNA bases $ (A, \; T, \; G, \; C) $.
Citation: Shakir Ali, Amal S. Alali, Kok Bin Wong, Elif Segah Oztas, Pushpendra Sharma. Cyclic codes over non-chain ring $ \mathcal{R}(\alpha_1, \alpha_2, \ldots, \alpha_s) $ and their applications to quantum and DNA codes[J]. AIMS Mathematics, 2024, 9(3): 7396-7413. doi: 10.3934/math.2024358
Let $ s \geq 1 $ be a fixed integer. In this paper, we focus on generating cyclic codes over the ring $ \mathcal{R}(\alpha_1, \alpha_2, \ldots, \alpha_s) $, where $ \alpha_i \in \mathbb{F}_q\backslash \{0\} $, $ 1 \leq i \leq s $, by using the Gray map that is defined by the idempotents. Moreover, we describe the process to generate an idempotent by using the formula (2.1). As applications, we obtain both optimal and new quantum codes. Additionally, we solve the DNA reversibility problem by introducing $ \mathbb{F}_q $ reversibility. The aim to introduce the $ \mathbb{F}_q $ reversibility is to describe IUPAC nucleotide codes, and consequently, 5 IUPAC DNA bases are considered instead of 4 DNA bases $ (A, \; T, \; G, \; C) $.
[1] | A. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301–319. https://doi.org/10.1109/18.312154 doi: 10.1109/18.312154 |
[2] | S. Ling, C. Xing, Coding theory: a first course, Cambridge University Press, 2004. |
[3] | F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, North-Holland Mathematical Library, Elsevier, 1977. |
[4] | M. Grassl, Code tables: bounds on the parameters of various types of codes. Available from: http://www.codetables.de/. |
[5] | S. Zhu, Y. Wang, M. Shi, Some results on cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 56 (2010), 1680–1684. https://doi.org/10.1109/TIT.2010.2040896 doi: 10.1109/TIT.2010.2040896 |
[6] | P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A., 52 (1995), 2493–2496. https://doi.org/10.1103/PhysRevA.52.R2493 doi: 10.1103/PhysRevA.52.R2493 |
[7] | A. R. Calderbank, E. M. Rains, P. M. Shor, N. J. A. Sloane, Quantum error-correction via codes over GF(4), IEEE Trans. Inf. Theory, 44 (1998), 1369–1387. https://doi.org/10.1109/18.681315 |
[8] | J. Qian, W. Ma, W. Gou, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inf., 50 (2009), 1277–1283. https://doi.org/10.1142/S0219749909005560 doi: 10.1142/S0219749909005560 |
[9] | X. Kai, S. Zhu, Quaternary construction of quantum codes from cyclic codes over $F_4 + uF_4$, Int. J. Quantum Inf., 9 (2011), 689–700. https://doi.org/10.1142/S0219749911007757 doi: 10.1142/S0219749911007757 |
[10] | J. Gao, Quantum codes from cyclic codes over $\mathbb{F}_q + v\mathbb{F}_q + v^2\mathbb{F}_q + v^3\mathbb{F}_q$, Int. J. Quantum Inf., 13 (2015), 1550063. https://doi.org/10.1142/S021974991550063X doi: 10.1142/S021974991550063X |
[11] | M. Özen, N. T. Özzaim, H. Ince, Quantum codes from cyclic codes over $F_3 + uF_3 + vF_3 + uvF_3$, J. Phys., 766 (2016), 012020. https://doi.org/10.1088/1742-6596/766/1/012020 |
[12] | M. Ashraf, N. Khan, G. Mohammad, New quantum and LCD codes over the finite field of odd characteristic, Int. J. Theor. Phys., 60 (2021), 2322–2332. https://doi.org/10.1007/s10773-021-04849-2 doi: 10.1007/s10773-021-04849-2 |
[13] | S. Ali, A. S. Alali, M. Jeelani, M. Kurulay, E. S. Oztas, P. Sharma, On the construction of quantum and LCD codes from cyclic codes over the finite commutative rings, Axioms, 12 (2023), 367. https://doi.org/10.3390/axioms12040367 doi: 10.3390/axioms12040367 |
[14] | S. Ali, S. A. Alali, E. S. Oztas, P. Sharma, Construction of quantum codes over the class of commutative rings and their applications to DNA codes, Mathematics, 11 (2023), 1430. https://doi.org/10.3390/math11061430 doi: 10.3390/math11061430 |
[15] | M. Ashraf, G. Mohammad, Quantum codes from cyclic codes over $\mathbb{F}_q +u\mathbb{F}_q +v\mathbb{F}_q +uv\mathbb{F}_q$, Quantum Inf. Process., 15 (2016), 4089. https://doi.org/10.1007/s11128-016-1379-8 doi: 10.1007/s11128-016-1379-8 |
[16] | M. Ashraf, G. Mohammad, Quantum codes over $F_p$ from cyclic codes over $F_p[u, v]/\langle u^2-1, v^3- v, uv-vu\rangle $, Cryptogr. Commun., 11 (2019), 325–335. https://doi.org/10.1007/s12095-018-0299-0 |
[17] | S. Bhardwaj, M. Goyal, M. Raka, New quantum codes from constacyclic codes over a general non-chain ring, arXiv, 2022. https://doi.org/10.48550/arXiv.2212.02821 |
[18] | H. Islam, O. Prakash, Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring, Cryptogr. Commun., 14 (2022), 59–73. https://doi.org/10.1007/s12095-021-00516-9 doi: 10.1007/s12095-021-00516-9 |
[19] | H. Islam, O. Prakash, New quantum and LCD codes over the finite field of even characteristic, Def. Sci. J., 71 (2020), 656–661. https://doi.org/10.14429/dsj.71.16641 doi: 10.14429/dsj.71.16641 |
[20] | L. Adleman, Molecular computation of solutions to combinatorial problems, Science, 266 (1994), 1021–1024. https://doi.org/10.1126/science.7973651 doi: 10.1126/science.7973651 |
[21] | L. S. Liebovitch, Y. Tao, A. T. Todorov, L. Levine, Is there an error correcting code in the base sequence in DNA, Biophys. J., 71 (1996), 1539–1544. https://doi.org/10.1016/S0006-3495(96)79356-6 doi: 10.1016/S0006-3495(96)79356-6 |
[22] | M. M. Brandao, L. Spoladore, L. C. B. Faria, A. S. L. Rocha, M. C. Silva-Filho, R. Palazzo, Ancient DNA sequence revealed by error-correcting codes, Sci. Rep., 5 (2015), 12051. https://doi.org/10.1038/srep12051 doi: 10.1038/srep12051 |
[23] | A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith, et al., Demon-stration of a word design strategy for DNA computing on surfaces, Nucleic Acids Res., 25 (1997), 4748–4757. https://doi.org/10.1093/nar/25.23.4748 doi: 10.1093/nar/25.23.4748 |
[24] | O. D. King, Bounds for DNA codes with constant GC-content, Electron. J. Comb., 10 (2003), R33. https://doi.org/10.37236/1726 doi: 10.37236/1726 |
[25] | M. Li, H. J. Lee, A. E. Condon, R. M. Corn, DNA word design strategy for creating sets of non-interacting oligonucleotides for DNA microarrays, Langmuir, 18 (2002), 805–812. https://doi.org/10.1021/la0112209 doi: 10.1021/la0112209 |
[26] | A. Marathe, A. E. Condon, R. M. Corn, On combinatorial DNA word design, J. Comput. Biol., 8 (2001), 201–220. https://doi.org/10.1089/10665270152530818 doi: 10.1089/10665270152530818 |
[27] | E. S. Oztas, I. Siap, Lifted polynomials over $F_16$ and their applications to DNA codes, Filomat, 27 (2013), 459–466. https://doi.org/10.2298/FIL1303459O doi: 10.2298/FIL1303459O |
[28] | E. S. Oztas, I. Siap, On a generalization of lifted polynomials over finite fields and their applications to DNA codes, Int. J. Comput. Math., 92 (2015), 1976–1988. https://doi.org/10.1080/00207160.2014.930449 doi: 10.1080/00207160.2014.930449 |
[29] | T. Abualrub, A. Ghrayeb, X. Zeng, Construction of cyclic codes over $GF(4)$ for DNA computing, J. Franklin Inst., 343 (2006), 448–457. https://doi.org/10.1016/j.jfranklin.2006.02.009 |
[30] | H. Q. Dinh, S. Pathak, A. K. Upadhyay, W. Yamaka, New DNA codes from cyclic codes over mixed alphabets, Mathematics, 8 (2020), 1977. https://doi.org/10.3390/math8111977 doi: 10.3390/math8111977 |
[31] | H. Q. Dinh, A. K. Singh, S. Pattanayak, S. Sriboonchitta, Construction of cyclic DNA codes over the ring $Z_4[u]/\langle u^2-1\rangle $ based on the deletion distance, Theor. Comput. Sci., 773 (2019), 27–42. https://doi.org/10.1016/j.tcs.2018.06.002 doi: 10.1016/j.tcs.2018.06.002 |
[32] | H. Q. Dinh, A. K. Singh, S. Pattanayak, S. Sriboonchitta, Cyclic DNA codes over the ring $F _2+ u F _2+ v F _2+ uv F _2+ v^ 2 F _2+ uv^ 2 F _2 $, Des. Codes Cryptogr., 86 (2018), 1451–1467. https://doi.org/10.1007/s10623-017-0405-x doi: 10.1007/s10623-017-0405-x |
[33] | K. Gowdhaman, S. Gupta, C. Mohan, K. Guenda, D. Chinnapillai, Cyclic DNA codes over the ring $Z_4 + uZ_4 + u^ 2Z_4$, J. Algebra Comb. Discrete Appl., 8 (2021), 219–231. |
[34] | F. Gursoy, E. S. Oztas, B. Yildiz, Reversible DNA codes over a family of non-chain rings $R_{k, s}$, arXiv, 2017. https://doi.org/10.48550/arXiv.1711.02385 |
[35] | E. S. Oztas, B. Yildiz, I. Siap, A novel approach for constructing reversible codes and applications to DNA codes over the ring $F_2[u]/(u^2k- 1)$, Finite Fields Appl., 46 (2017), 217–234. https://doi.org/10.1016/j.ffa.2017.04.001 doi: 10.1016/j.ffa.2017.04.001 |
[36] | I. Siap, T. Abulraub, A. Ghrayeb, Similarity cyclic DNA codes over rings, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, IEEE, 2008. https://doi.org/10.1109/ICBBE.2008.149 |
[37] | I. Siap, T. Abulraub, A. Ghrayeb, Cyclic DNA codes over the ring $\mathbb{F}_2[u]/(u^2-1)$ based on the deletion distance, J. Franklin Inst., 346 (2009), 731–740. https://doi.org/10.1016/j.jfranklin.2009.07.002 doi: 10.1016/j.jfranklin.2009.07.002 |
[38] | B. Yildiz, I. Siap, Cyclic codes over $\mathbb{F}_2[u]/(u^4-1)$ and applications to DNA codes, Comput. Math. Appl., 63 (2012), 1169–1176. https://doi.org/10.1016/j.camwa.2011.12.029 doi: 10.1016/j.camwa.2011.12.029 |
[39] | A. D. Johnson, An extended IUPAC nomenclature code for polymorphic nucleic acids, Bioinformatics, 26 (2010), 1386–1389. https://doi.org/10.1093/bioinformatics/btq098 doi: 10.1093/bioinformatics/btq098 |
[40] | T. Bag, A. K. Upadhyay, Study on negacyclic codes over the ring $Z_p[u]/\langle u^{k+1}-u\rangle$, J. Appl. Math. Comput., 59 (2019), 693–700. https://doi.org/10.1007/s12190-018-1197-5 |
[41] | M. Grassl, T. Beth, M. Röetteler, On optimal quantum codes, Int. J. Quantum Inf., 2 (2004), 55–64. https://doi.org/10.1142/S0219749904000079 |
[42] | N. Aydin, P. Liu, B. Yoshino, A database of quantum codes, arXiv, 2021. https://doi.org/10.48550/arXiv.2108.03567 |
[43] | W. Bosma, J. Cannon, Handbook of magma functions, University of Sydney, 1995. |