The Levin-Nohel equations play key roles in the interpretation of real phenomena and have interesting applications in engineering and science areas, such as mathematical physics, mathematical biology, image processing, and numerical analyses. This article investigates a new structure for the delay neutral Levin-Nohel integrodifferential (NLNID) system via a Hilfer fractional derivative and is supplemented by initial and instantaneous impulse conditions. A fractional integral equation corresponding to the proposed system is derived and used to prove the existence and uniqueness of the solution with the help of the Banach contraction principle. Additionally, the Ulam-Hyers-Mittag-Leffler (UHML) stability is studied by utilizing the generalized Gronwall's inequality and nonlinear analysis issues. As a consequence, the Ulam-Hyers (UH) stability and generalized UH are also deduced. Furthermore, the Riemann-Liouville ($ \mathcal{R.L.} $) and Caputo fractional versions of the proposed system are discussed. Finally, numerical applications supported with tables and graphics are provided to test the exactitude of the findings.
Citation: Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez. On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay[J]. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357
The Levin-Nohel equations play key roles in the interpretation of real phenomena and have interesting applications in engineering and science areas, such as mathematical physics, mathematical biology, image processing, and numerical analyses. This article investigates a new structure for the delay neutral Levin-Nohel integrodifferential (NLNID) system via a Hilfer fractional derivative and is supplemented by initial and instantaneous impulse conditions. A fractional integral equation corresponding to the proposed system is derived and used to prove the existence and uniqueness of the solution with the help of the Banach contraction principle. Additionally, the Ulam-Hyers-Mittag-Leffler (UHML) stability is studied by utilizing the generalized Gronwall's inequality and nonlinear analysis issues. As a consequence, the Ulam-Hyers (UH) stability and generalized UH are also deduced. Furthermore, the Riemann-Liouville ($ \mathcal{R.L.} $) and Caputo fractional versions of the proposed system are discussed. Finally, numerical applications supported with tables and graphics are provided to test the exactitude of the findings.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[3] | S. T. M. Thabet, I. Kedim, Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains, J. Math., 2023 (2023), 8668325. https://doi.org/10.1155/2023/8668325 doi: 10.1155/2023/8668325 |
[4] | S. T. M. Thabet, S. Al-Sa$\mathop {\rm{d}}\limits^{'} $i, I. Kedim, A. Sh. Rafeeq, S. Rezapour, Analysis study on multi-order $\varrho$-Hilfer fractional pantograph implicit differential equation on unbounded domains, AIMS Mathematics, 8 (2023), 18455–18473. https://doi.org/10.3934/math.2023938 doi: 10.3934/math.2023938 |
[5] | K. S. Nisar, S. Alsaeed, K. Kaliraj, C. Ravichandran, W. Albalawi, A. Abdel-Aty, Existence criteria for fractional differential equations using the topological degree method, AIMS Mathematics, 8 (2023) 21914–21928. https://doi.org/10.3934/math.20231117 doi: 10.3934/math.20231117 |
[6] | M. I. Ayari, S. T. M. Thabet, Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator, Arab J. Math. Sci., 2023. https://doi.org/10.1108/AJMS-06-2022-0147 doi: 10.1108/AJMS-06-2022-0147 |
[7] | H. Baghani, M. Feckan, J Farokhi-Ostad, J. Alzabut, New existence and uniqueness result for fractional Bagley-Torvik differential equation, Miskolc Math. Notes, 23 (2022), 537–549. http://dx.doi.org/10.18514/MMN.2022.3702 doi: 10.18514/MMN.2022.3702 |
[8] | J. Madhu, K. Vinutha, R. N. Kumar, R. J. P. Gowda, B. C. Prasannakumara, A. S. Alqahtani, et al., Impact of solid-liquid interfacial layer in the nanofluid flow between stretching stationary disk and a rotating cone, Tribol. Int., 192 (2024) 109187. https://doi.org/10.1016/j.triboint.2023.109187 doi: 10.1016/j.triboint.2023.109187 |
[9] | P. Srilatha, R. S. V. Kumar, R. N. Kumar, R. J. P. Gowda, A. Abdulrahman, B. C. Prasannakumara, Impact of solid-fluid layer and nanoparticle diameter on Maxwell nanofluid flow subjected to variable thermal conductivity and uniform magnetic field, Heliyon, 9 (2023), e21189. https://doi.org/10.1016/j.heliyon.2023.e21189 doi: 10.1016/j.heliyon.2023.e21189 |
[10] | R. S. V. Kumar, R. N. Kumar, S. B. Ahmed, J. Madhu, A. Verma, R. J. P. Gowda, Unsteady flow of a ternary nanofluid over a slow-rotating disk subject to uniform suction and backpropagated neural network, Numer. Heat Transfer B Fund., 2023. https://doi.org/10.1080/10407790.2023.2269610 doi: 10.1080/10407790.2023.2269610 |
[11] | H. A. H. Alzahrani, A. Alsaiari, J. K. Madhukesh, R. Naveen Kumar, B. M. Prasanna, Effect of thermal radiation on heat transfer in plane wall jet flow of Casson nanofluid with suction subject to a slip boundary condition, Waves Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2030502 doi: 10.1080/17455030.2022.2030502 |
[12] | V. Volterra, Sur la théorie mathématique des phénomès héréditaires, J. Math. Pures Appl., 7 (1928), 249–298. |
[13] | F. H. Brownell, W. K. Ergen, A theorem on rearrangements and its application to certain delay differential equations, J. Rational Mech. Anal., 3 (1954), 565–579. |
[14] | J. J. Levin, J. A. Nohel, On a system of integrodifferential equations occurring in reactor dynamics, J. Math. Mech., 9 (1960), 347–368. |
[15] | J. J. Levin, J. A. Nohel, On a nonlinear delay equation, J. Math. Anal. Appl., 8 (1964), 31–44. |
[16] | N. T. Dung, A transfer theorem and stability of Levin-Nohel integro-differential equations, Adv. Differ. Equ., 2017 (2017), 70. https://doi.org/10.1186/s13662-017-1122-5 doi: 10.1186/s13662-017-1122-5 |
[17] | K. A. Khelil, A. Ardjouni, A. Djoudi, Stability in nonlinear neutral Levin-Nohel integro-dynamic equations, Surv. Math. Appl., 14 (2019), 173–193. |
[18] | M. Ladjimi, A. G. Lakoud, Stability of solutions of fractional neutral Levin-Nohel integro-differential equations, Math. Methods Appl. Sci., 2023. https://doi.org/10.1002/mma.9768 doi: 10.1002/mma.9768 |
[19] | Z. Odibat, V. S. Erturk, P. Kumar, A. B. Makhlouf, V. Govindaraj, An implementation of the generalized differential transform scheme for simulating impulsive fractional differential equations, Math. Probl. Eng., 2022 (2022), 8280203. https://doi.org/10.1155/2022/8280203 doi: 10.1155/2022/8280203 |
[20] | W. S. Du, M. Kostic, D. Velinov, Abstract impulsive Volterra integro-differential inclusions, Fractal Fract., 7 (2023), 73. https://doi.org/10.3390/fractalfract7010073 doi: 10.3390/fractalfract7010073 |
[21] | G. R. Gautam, M. Kumar, A. Dwivedi, G. Rani, N. Arya, J. Bishnoi, Some sufficient conditions of existence and trajectory controllability for impulsive and initial value fractional order functional differential equations, Results Control Optim., 12 (2023) 100237. https://doi.org/10.1016/j.rico.2023.100237 doi: 10.1016/j.rico.2023.100237 |
[22] | P. K. L. Priya, K. Kaliraj, An application of fixed point technique of Rothe's-type to interpret the controllability criteria of neutral nonlinear fractional ordered impulsive system, Chaos Solitons Fractals, 164 (2022), 112647. https://doi.org/10.1016/j.chaos.2022.112647 doi: 10.1016/j.chaos.2022.112647 |
[23] | C. Ravichandran, K. Munusamy, K. S. Nisar, N. Valliammal, Results on neutral partial integrodifferential equations using Monch-Krasnoselskii fixed point theorem with nonlocal conditions, Fractal Fract., 6 (2022), 75. https://doi.org/10.3390/fractalfract6020075 doi: 10.3390/fractalfract6020075 |
[24] | C. Ravichandran, K. Jothimani, K. S. Nisar, E. E. Mahmoud, I. S. Yahia, An interpretation on controllability of Hilfer fractional derivative with nondense domain, Alexandria Eng. J., 61 (2022) 9941–9948. https://doi.org/10.1016/j.aej.2022.03.011 doi: 10.1016/j.aej.2022.03.011 |
[25] | M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017 |
[26] | B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., 3 (2009), 251–258. https://doi.org/10.1016/j.nahs.2009.01.008 doi: 10.1016/j.nahs.2009.01.008 |
[27] | M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 8 (2009). |
[28] | G. Wang, L. Zhang, G. Song, Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions, Nonlinear Anal., 74 (2011), 974–982. https://doi.org/10.1016/j.na.2010.09.054 doi: 10.1016/j.na.2010.09.054 |
[29] | J. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806–831. https://doi.org/10.1515/fca-2016-0044 doi: 10.1515/fca-2016-0044 |
[30] | A. Anguraja, P. Karthikeyanb, M. Riveroc, J. J. Trujillo, On new existence results for fractional integro-differential equations with impulsive and integral condition, Comput. Math. Appl., 66 (2014), 2587–2594. https://doi.org/10.1016/j.camwa.2013.01.034 doi: 10.1016/j.camwa.2013.01.034 |
[31] | J. P. Kharade, K. D. Kucche, On the impulsive implicit $\psi$-Hilfer fractional differential equations with delay, Math. Methods Appl. Sci., 43 (2019), 1938–1952. https://doi.org/10.1002/mma.6017 doi: 10.1002/mma.6017 |
[32] | K. B. Lima, J. V. da C. Sousa, E. C. de Oliveira, Ulam-Hyers type stability for $\psi$-Hilfer fractional differential equations with impulses and delay, Comput. Appl. Math., 40 (2021), 293. https://doi.org/10.1007/s40314-021-01686-1 doi: 10.1007/s40314-021-01686-1 |
[33] | N. Chefnaj, K. Hilal, A. Kajouni, Impulsive $\psi$-caputo hybrid fractional differential equations with non-local conditions, J. Math. Sci., 2023. https://doi.org/10.1007/s10958-023-06805-3 doi: 10.1007/s10958-023-06805-3 |
[34] | K. Liu, J. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 50. https://doi.org/10.1186/s13662-019-1997-4 doi: 10.1186/s13662-019-1997-4 |
[35] | M. A. Almalahi, S. K. Panchal, F. Jarad, T. Abdeljawad, Ulam-Hyers-Mittag-Leffler stability for tripled system of weighted fractional operator with time delay, Adv. Differ. Equ., 2021 (2021), 299. https://doi.org/10.1186/s13662-021-03455-0 doi: 10.1186/s13662-021-03455-0 |
[36] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers-Mittag-Leffler stability results of $\psi$-Hilfer nonlocal Cauchy problem, Rend. Circ. Mat. Palermo, II. Ser., 70 (2020), 57–77. https://doi.org/10.1007/s12215-020-00484-8 doi: 10.1007/s12215-020-00484-8 |
[37] | S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei, M. I. Ayari, Solvability of a $\varrho$-Hilfer fractional snap dynamic system on unbounded domains, Fractal Fract., 7 (2023), 607. https://doi.org/10.3390/fractalfract7080607 doi: 10.3390/fractalfract7080607 |
[38] | S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function, AIMS Mathematics, 8 (2023), 23635–23654. https://doi.org/10.3934/math.20231202 doi: 10.3934/math.20231202 |
[39] | K. M. Furati, M. D. Kassim, N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009 |
[40] | K. D. Kucche, J. P. Kharade, J. V. C. Sousa, On the nonlinear impulsive $\psi$-Hilfer fractional differential equations, Math. Model. Anal., 25 (2019), 642–660. https://doi.org/10.3846/mma.2020.11445 doi: 10.3846/mma.2020.11445 |
[41] | J. R. Wang, Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63 (2014), 1181–1190. https://doi.org/10.1080/02331934.2014.906597 doi: 10.1080/02331934.2014.906597 |
[42] | K. Liu, J. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 50. https://doi.org/10.1186/s13662-019-1997-4 doi: 10.1186/s13662-019-1997-4 |
[43] | C. Wang, T. Xu, Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Appl. Math., 60 (2015), 383–393. https://doi.org/10.1007/s10492-015-0102-x doi: 10.1007/s10492-015-0102-x |
[44] | S. S. Haider, M. Rehman, T. Abdeljawad, On Hilfer fractional difference operator, Adv. Differ. Equ., 2020 (2020), 122. https://doi.org/10.1186/s13662-020-02576-2 doi: 10.1186/s13662-020-02576-2 |