This paper establishes a novel generalized Gronwall inequality concerning the $ \psi $-Hilfer proportional fractional operators. Before proving the main results, the solution of the linear nonlocal coupled $ \psi $-Hilfer proportional Cauchy-type system with constant coefficients under the Mittag-Leffler kernel is created. The uniqueness result for the proposed coupled system is established using Banach's contraction mapping principle. Furthermore, a variety of the Mittag-Leffler-Ulam-Hyers stability of the solutions for the proposed coupled system is investigated. Finally, a numerical example is given to show the effectiveness and applicability of the obtained results, and graphical simulations in the case of linear systems are shown.
Citation: Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan. A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system[J]. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191
This paper establishes a novel generalized Gronwall inequality concerning the $ \psi $-Hilfer proportional fractional operators. Before proving the main results, the solution of the linear nonlocal coupled $ \psi $-Hilfer proportional Cauchy-type system with constant coefficients under the Mittag-Leffler kernel is created. The uniqueness result for the proposed coupled system is established using Banach's contraction mapping principle. Furthermore, a variety of the Mittag-Leffler-Ulam-Hyers stability of the solutions for the proposed coupled system is investigated. Finally, a numerical example is given to show the effectiveness and applicability of the obtained results, and graphical simulations in the case of linear systems are shown.
[1] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Philadelphia: Gordon and Breach Science Publishers, 1993. |
[2] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[4] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009. |
[5] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. |
[6] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[7] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[8] | J. V. D. C. Sousa, E. C. D. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[9] | F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. https://doi.org/10.1515/math-2020-0014 doi: 10.1515/math-2020-0014 |
[10] | F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 303. https://doi.org/10.1186/s13662-020-02767-x doi: 10.1186/s13662-020-02767-x |
[11] | I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 2020 (2020), 329. https://doi.org/10.1186/s13662-020-02792-w doi: 10.1186/s13662-020-02792-w |
[12] | I. Mallah, I. Ahmed, A. Akgul, F. Jarad, S. Alha, On $\psi$-Hilfer generalized proportional fractional operators, AIMS Mathematics, 7 (2022), 82–103. https://doi.org/10.3934/math.2022005 doi: 10.3934/math.2022005 |
[13] | R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. https://doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5 |
[14] | I. Ali, N. A. Malik, Hilfer fractional advection-diffusion equations with power-law initial condition; a numerical study using variational iteration method, Comput. Math. Appl., 68 (2014), 1161–1179. https://doi.org/10.1016/j.camwa.2014.08.021 doi: 10.1016/j.camwa.2014.08.021 |
[15] | R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comput. Appl. Math., 308 (2016), 39–45. https://doi.org/10.1016/j.cam.2016.05.014 doi: 10.1016/j.cam.2016.05.014 |
[16] | V. M. Bulavatsky, Mathematical modeling of fractional differential filtration dynamics based on models with Hilfer-Prabhakar derivative, Cybern. Syst. Anal., 53 (2017), 204–216. https://doi.org/10.1007/s10559-017-9920-z doi: 10.1007/s10559-017-9920-z |
[17] | V. M. Bulavatsky, Mathematical models and problems of fractional-differential dynamics of some relaxation filtration processes, Cybern. Syst. Anal., 54 (2018), 727–736. https://doi.org/10.1007/s10559-018-0074-4 doi: 10.1007/s10559-018-0074-4 |
[18] | H. Joshi, B. K. Jha, Chaos of calcium diffusion in Parkinson's infectious disease model and treatment mechanism via Hilfer fractional derivative, Math. Model. Numer. Simul. Appl., 1 (2021), 84–94. https://doi.org/10.53391/mmnsa.2021.01.008 doi: 10.53391/mmnsa.2021.01.008 |
[19] | B. G. Pachpatte, Inequalities for differential and integral equations, New York: Academic Press, 1998. |
[20] | T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 (1919), 292–296. https://doi.org/10.2307/1967124 doi: 10.2307/1967124 |
[21] | H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061 |
[22] | Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457–5473. https://doi.org/10.2298/FIL1717457A doi: 10.2298/FIL1717457A |
[23] | J. V. D. C. Sousa, E. C. D. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. https://doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02 |
[24] | J. Alzabut, T. Abdeljawad, F. Jarad, W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), 101. https://doi.org/10.1186/s13660-019-2052-4 doi: 10.1186/s13660-019-2052-4 |
[25] | J. Alzabut, Y. Adjabi, W. Sudsutad, M. U. Rehman, New generalizations for Gronwall type inequalities involving a $\psi$-fractional operator and their applications, AIMS Mathematics, 6 (2021), 5053–5077. https://doi.org/10.3934/math.2021299 doi: 10.3934/math.2021299 |
[26] | D. Jiang, C. Bai, On coupled Gronwall inequalities involving a $\psi$-fractional integral operator with its applications, AIMS Mathematics, 7 (2022), 7728–7741. https://doi.org/10.3934/math.2022434 doi: 10.3934/math.2022434 |
[27] | Q. Wang, S. Zhu, On the generalized Gronwall inequalities involving $\psi$-fractional integral operator with applications, AIMS Mathematics, 7 (2022), 20370–20380. https://doi.org/10.3934/math.20221115 doi: 10.3934/math.20221115 |
[28] | W. Sudsutad, C. Thaiprayoon, B. Khaminsou, J. Alzabut, J. Kongson, A Gronwall inequality and its applications to the Cauchy-type problem under $\psi$-Hilfer proportional fractional operators, J. Inequal. Appl., 2023 (2023), 20. https://doi.org/10.1186/s13660-023-02929-x doi: 10.1186/s13660-023-02929-x |
[29] | S. M. Ulam, A collection of mathematical problems, interscience tracts in pure and applied mathematics, New York, London: Interscience Publishers, 1960. |
[30] | D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, Boston: Birkhäuser, 1998. https://doi.org/10.1007/978-1-4612-1790-9 |
[31] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.2307/2042795 doi: 10.2307/2042795 |
[32] | J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.63 doi: 10.14232/ejqtde.2011.1.63 |
[33] | J. Wang, X. Li, $E_{\alpha}$-Ulam type stability of fractional order ordinary differential equations, J. Appl. Math. Comput., 45 (2014), 449–459. https://doi.org/10.1007/s12190-013-0731-8 doi: 10.1007/s12190-013-0731-8 |
[34] | Z. Gao, X. Yu, Existence results for BVP of a class of Hilfer fractional differential equations, J. Appl. Math. Comput., 56 (2018), 217–233. https://doi.org/10.1007/s12190-016-1070-3 doi: 10.1007/s12190-016-1070-3 |
[35] | K. D. Kucche, A. D. Mali, J. V. D. C. Sousa, On the nonlinear $\psi$-Hilfer fractional differential equations, Comput. Appl. Math., 38 (2019), 73. https://doi.org/10.1007/s40314-019-0833-5 doi: 10.1007/s40314-019-0833-5 |
[36] | K. Liu, J. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 50. https://doi.org/10.1186/s13662-019-1997-4 doi: 10.1186/s13662-019-1997-4 |
[37] | M. A. Almalahi, S. K. Panchal, On the theoty of $\psi$-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ. Math. Phys., 14 (2021), 159–175. https://doi.org/10.17516/1997-1397-2021-14-2-161-177 doi: 10.17516/1997-1397-2021-14-2-161-177 |
[38] | M. A. Almalahi1, S. K. Panchal, K. Aldwoah, M. Lotayif, On the explicit solution of $\psi$-Hilfer integro-differential nonlocal Cauchy problem, Progr. Fract. Differ. Appl., 9 (2023), 65–77. http://dx.doi.org/10.18576/pfda/090104 doi: 10.18576/pfda/090104 |
[39] | R. L. Magin, Fractional calculus in bioengineering, Danbury: Begell House Publishers, 2006. |
[40] | H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, London: Academic Press, 2017. |
[41] | G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford: Oxford University Press, 2005. |
[42] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of $\psi$-Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. https://doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142 |
[43] | M. A. Almalahi, O. Bazighifan, S. K. Panchal, S. S. Askar, G. I. Oros, Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators, Fractal Fract., 5 (2021), 178. https://doi.org/10.3390/fractalfract5040178 doi: 10.3390/fractalfract5040178 |
[44] | A. Samadi, S. K. Ntouyas, J. Tariboon, On a nonlocal coupled system of Hilfer generalized proportional fractional differential equations, Symmetry, 14 (2022), 738. https://doi.org/10.3390/sym14040738 doi: 10.3390/sym14040738 |
[45] | B. Ahmad, S. Aljoudi, Investigation of a coupled system of Hilfer-Hadamard fractional differential equations with nonlocal coupled Hadamard fractional integral boundary conditions, Fractal Fract., 7 (2023), 178. https://doi.org/10.3390/fractalfract7020178 doi: 10.3390/fractalfract7020178 |
[46] | J. R. Wang, M. Feckan, Y. Zhou, Presentation of solutions of impulsive fractional Langevin equations and existence results, Eur. Phys. J. Spec. Top., 222 (2013), 1857–1874. https://doi.org/10.1140/epjst/e2013-01969-9 doi: 10.1140/epjst/e2013-01969-9 |
[47] | R. Courant, E. J. McShane, Differential and integral calculus, New York: John Wiley & Sons, 1988. |
[48] | E. L. Lima, Análise real, Insituto Nacional de Matemática Pura e Aplicada, 2006. |
[49] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |