The fractional sine series (FRSS) and the fractional cosine series (FRCS) were defined. Three types of discrete convolution operations for FRCS and FRSS were introduced, along with a detailed investigation into their corresponding convolution theorems. The interrelationship between these convolution operations was also discussed. Additionally, as an application of the presented results, two forms of discrete convolution equations based on the proposed convolution theorems were examined, resulting in explicit solutions for these equations. Furthermore, numerical simulations were provided to demonstrate that our proposed solution can be easily implemented with low computational complexity.
Citation: Rongbo Wang, Qiang Feng, Jinyi Ji. The discrete convolution for fractional cosine-sine series and its application in convolution equations[J]. AIMS Mathematics, 2024, 9(2): 2641-2656. doi: 10.3934/math.2024130
The fractional sine series (FRSS) and the fractional cosine series (FRCS) were defined. Three types of discrete convolution operations for FRCS and FRSS were introduced, along with a detailed investigation into their corresponding convolution theorems. The interrelationship between these convolution operations was also discussed. Additionally, as an application of the presented results, two forms of discrete convolution equations based on the proposed convolution theorems were examined, resulting in explicit solutions for these equations. Furthermore, numerical simulations were provided to demonstrate that our proposed solution can be easily implemented with low computational complexity.
[1] | I. E. Lager, M. Štumpf, G. A. E. Vandenbosch, G. Antonini, Evaluation of convolution integrals at late-times revisited, IEEE Trans. Antennas Propag., 70 (2022), 9953–9958. https://doi.org/10.1109/TAP.2022.3168347 doi: 10.1109/TAP.2022.3168347 |
[2] | L. Liu, J. J. Ma, Collocation boundary value methods for auto-convolution Volterra integral equations, Appl. Numer. Math., 177 (2022), 1–17. https://doi.org/10.1016/j.apnum.2022.03.004 doi: 10.1016/j.apnum.2022.03.004 |
[3] | Y. Xiang, S. Yuan, Q. Feng, Fractional Fourier cosine and sine Laplace weighted convolution and its application, IET Signal Process., 17 (2023), 12170. https://doi.org/10.1049/sil2.12170 doi: 10.1049/sil2.12170 |
[4] | M. L. Maslakov, New approach to the iterative method for numerical solution of a convolution type equation determined for a certain class of problems, Comput. Math. Math. Phys., 61 (2021), 1260–1268. https://doi.org/10.1134/S0965542521080054 doi: 10.1134/S0965542521080054 |
[5] | M. S. Gao, J. Yu, Z. F. Yang, J. B. Zhao, Physics embedded graph convolution neural network for power flow calculation considering uncertain injections and topology, IEEE Trans. Neural Networks Learn. Syst., 2023. https://doi.org/10.1109/TNNLS.2023.3287028 |
[6] | Ö. Civalek, Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach, J. Comput. Appl. Math., 205 (2007), 251–271. https://doi.org/10.1016/j.cam.2006.05.001 doi: 10.1016/j.cam.2006.05.001 |
[7] | J. González-Camus, C. Lizama, P. J. Miana, Fundamental solutions for semidiscrete evolution equations via Banach algebras, Adv. Differ, Equations, 2021 (2021), 378–410. https://doi.org/10.1186/s13662-020-03206-7 doi: 10.1186/s13662-020-03206-7 |
[8] | Y. Y. Mei, Q. Feng, X. X. Gao, Y. B. Zhao, Convolution theorem associated with the QWFRFT, Chin. J. Electron., 32 (2023), 485–492. https://doi.org/10.23919/cje.2021.00.225 doi: 10.23919/cje.2021.00.225 |
[9] | S. B. Yakubovich, Y. F. Luchko, The hypergeometric approach to integral transforms and convolutions, Springer Science & Business Media, 1994. https://doi.org/10.1007/978-94-011-1196-6 |
[10] | M. Kumar, T. K. Rawat, Design of fractional order differentiator using type-III and type-IV discrete cosine transform, Eng. Sci. Technol., 20 (2017), 51–58. https://doi.org/10.1016/j.jestch.2016.07.002 doi: 10.1016/j.jestch.2016.07.002 |
[11] | Q. Feng, B. Z. Li, Convolution theorem for fractional cosine-sine transform and its application, Math. Meth. Appl. Sci., 40 (2017), 3651–3665. https://doi.org/10.1002/mma.4251 doi: 10.1002/mma.4251 |
[12] | V. Guleria, S. Sabir, D. C. Mishra, Security of multiple RGB images by RSA cryptosystem combined with FrDCT and Arnold transform, J. Inf. Secur. Appl., 54 (2020), 102524. https://doi.org/10.1016/j.jisa.2020.102524 doi: 10.1016/j.jisa.2020.102524 |
[13] | Y. Ding, Z. L. Zhang, X. F. Zhao, D. Hong, W. Li, W. Cai, et al., AF2GNN: graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification, Inf. Sci., 602 (2022), 201–219. https://doi.org/10.1016/j.ins.2022.04.006 doi: 10.1016/j.ins.2022.04.006 |
[14] | Q. Feng, R. B. Wang, Fractional convolution, correlation theorem and its application in filter design, Signal Image Video Process., 14 (2020), 351–358. https://doi.org/10.1007/s11760-019-01563-9 doi: 10.1007/s11760-019-01563-9 |
[15] | V. F. García, J. M. Delgado, C. Rodríguez, Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel, Phys. Med. Biol., 45 (2000), 645–650. https://doi.org/10.1088/0031-9155/45/3/306 doi: 10.1088/0031-9155/45/3/306 |
[16] | K. Trimeche, Hypoelliptic Dunkl convolution equations in the space of distributions on $\mathbb{R}^d$, J. Fourier Anal. Appl., 12 (2006), 517–542. https://doi.org/10.1007/s00041-005-5073-y doi: 10.1007/s00041-005-5073-y |
[17] | X. X. Gao, Q. Feng, Y. Y. Mei, Discrete convolution associated with fractional cosine and sine series, J. Beijing Inst. Technol., 30 (2021), 305–310. https://doi.org/10.15918/j.jbit1004-0579.2021.040 doi: 10.15918/j.jbit1004-0579.2021.040 |
[18] | Q. Feng, R. B. Wang, Fractional convolution associated with a class of integral equations, IET Signal Process., 14 (2020), 15–23. https://doi.org/10.1049/iet-spr.2019.0140 doi: 10.1049/iet-spr.2019.0140 |
[19] | Z. W. Li, W. B. Gao, B. Z. Li, The solvability of a class of convolution equations associated with 2D FRFT, Mathematics, 8 (2020), 1928. https://doi.org/10.3390/math8111928 doi: 10.3390/math8111928 |
[20] | D. Oliveira e Silva, R. Quilodran, Smoothness of solutions of a convolution equation of restricted-type on the sphere, Forum Math. Sigma, 9 (2021), e12. https://doi.org/10.1017/fms.2021.7 doi: 10.1017/fms.2021.7 |
[21] | P. R. Li, Existence of solutions for dual singular integral equations with convolution kernels in case of non-normal type, J. Appl. Anal. Comput., 10 (2020), 2756–2766. https://doi.org/10.11948/20200192 doi: 10.11948/20200192 |
[22] | L. P. Castro, R. C. Guerra, N. M. Tuan, New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type, Math. Methods Appl. Sci., 43 (2020), 4835–4846. https://doi.org/10.1002/mma.6236 doi: 10.1002/mma.6236 |
[23] | Q. Feng, S. Yuan, The explicit solutions for a class of fractional Fourier-Laplace convolution equations, Integral Transforms Spec. Funct., 34 (2023), 128–144. https://doi.org/10.1080/10652469.2022.2093870 doi: 10.1080/10652469.2022.2093870 |
[24] | P. R. Li, G. B. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differ. Equations, 265 (2018), 5455–5471. https://doi.org/10.1016/j.jde.2018.07.056 doi: 10.1016/j.jde.2018.07.056 |
[25] | Z. R. Wang, B. Shiri, D. Baleanu, Discrete fractional watermark technique, Front. Inf. Technol. Electron. Eng., 21 (2020), 880–883. https://doi.org/10.1631/FITEE.2000133 doi: 10.1631/FITEE.2000133 |
[26] | H. M. Srivastava, W. Z. Lone, F. A. Shah, A. I. Zayed, Discrete quadratic-phase Fourier transform: theory and convolution structures, Entropy, 24 (2022), 1340. https://doi.org/10.3390/e24101340 doi: 10.3390/e24101340 |
[27] | G. Monegato, On a time discrete convolution-space collocation BEM for the numerical solution of two-dimensional wave propagation problems in unbounded domains, IMA J. Numer. Anal., 43 (2023), 3766–3795. https://doi.org/10.1093/imanum/drac068 doi: 10.1093/imanum/drac068 |
[28] | H. Tung, N. X. Thao, V. K. Tuan, The $h$-Fourier sine-Laplace discrete generalized convolution on time scale, Integral Transforms Spec. Funct., 34 (2022), 444–456. https://doi.org/10.1080/10652469.2022.2142788 doi: 10.1080/10652469.2022.2142788 |
[29] | N. X. Thao, V. K. Tuan, N. A. Dai, Discrete-time Fourier cosine convolution, Integral Transforms Spec. Funct., 29 (2018), 866–874. https://doi.org/10.1080/10652469.2018.1510924 doi: 10.1080/10652469.2018.1510924 |
[30] | N. X. Thao, V. K. Tuan, N. A. Dai, A discrete convolution involving Fourier sine and cosine series and its applications, Integral Transforms Spec. Funct., 31 (2020), 243–252. https://doi.org/10.1080/10652469.2019.1687467 doi: 10.1080/10652469.2019.1687467 |
[31] | T. Chen, Fractional-order accumulative generation with discrete convolution transformation, Fractal Fract., 7 (2023), 402. https://doi.org/10.3390/fractalfract7050402 doi: 10.3390/fractalfract7050402 |
[32] | C. Y. Ma, B. Shiria, G. C. Wu, D. Baleanuc, New fractional signal smoothing equations with short memory and variable order, Optik, 218 (2020), 164507. https://doi.org/10.1016/j.ijleo.2020.164507 doi: 10.1016/j.ijleo.2020.164507 |
[33] | J. A. D. Appleby, E. Lawless, Solution space characterisation of perturbed linear Volterra integrodifferential convolution equations: the LP case, Appl. Math. Lett., 146 (2023), 108825. https://doi.org/10.1016/j.aml.2023.108825 doi: 10.1016/j.aml.2023.108825 |
[34] | H. Hochstadt, Integral equations, John Wiley & Sons, Inc., 1973. Avaible from: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118165942.fmatter. |