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1. Introduction

Convolution plays an important role in various fields, including integral evaluation, numerical
analysis, solving differential and integral equations, mathematical physics [1–9] and filter design for
signal processing [10–14]. The importance of different convolutions lies in their diverse properties
and applications that they are able to exhibit [15–24]. Therefore, it is worthwhile and interesting to
continually investigate convolution and associated theorems due to their high potential for revealing
new properties and concrete applications

The discrete Fourier transforms [25] and the discrete fractional transform [26] have emerged as
significant tools in digital signal processing, given that practical data is predominantly processed at
discrete samples. Extensive research has been conducted on the discrete Fourier cosine convolution
and the discrete Fourier sine convolution associated with the Fourier cosine and sine series, resulting
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in numerous valuable theoretical achievements including Titchmarsh’s type theorem, discrete Young’s
type theorem and Watson’s type theorem [27–30], as well as the application of discrete fractional
calculus [31,32]. However, while the theory of discrete convolution for fractional cosine and sine series
is still in its early stages, it provides a driving force toward formulating a discrete fractional cosine
and sine series. Additionally, compared to the Fourier transform, which lacks free parameters, the
fractional transform offers enhanced flexibility and processing capabilities. Therefore, exploring the
define fractional cosine series (FRCS) and fractional sine series (FRSS), along with their corresponding
convolution theorems and applications, is both theoretically intriguing and practically beneficial.

The convolution equation has found significant applications in diverse fields such as engineering
mechanics, energy transfer and membrane or axis oscillation, particularly when addressing problems
related to the electrostatic field and magnetic field synthesis as well as the digital signal processing
(see [3, 4, 7, 15–24, 32, 33]). Obtaining solutions for these convolution equations is a meaningful issue
in equation theory that has been extensively studied by many researchers.

Taking this opportunity, our primary objective is to introduce the concept of FRCS and FRSS
while exploring their fundamental properties and applications in convolution equations. This paper
makes a threefold contribution: First, we extend the Fourier sine series (FSS) and the Fourier cosine
series (FCS) into the fractional domain by providing definitions for the FRSS and the FRCS. Second,
we propose three types of convolution operations for FRSS and FRCS, derive corresponding
convolution theorems and discuss the relationship between two discrete convolution operations. The
classical Fourier series results can be viewed as a special case of the derived results in this paper.
Third, the application of the discrete fractional cosine-sine series convolution is discussed, and
solutions for two types of convolution equations are analyzed with numerical simulations
demonstrating that our proposed solution is easily implementable with low computational complexity.

The structure of this paper is outlined as follows: Section 2 reviews the convolution operations for
Fourier sine and cosine series, along with their associated convolution theorems. In Section 3, three
distinct convolution operations for FRSS and FRCS are presented in detail together with derived
convolution theorems. Section 4 investigates the relationship between two discrete convolution
operations, while Section 5 discusses two types of convolution equations. Finally, conclusions are
summarized in Section 6.

2. Preliminaries

In this section, we mainly review the Fourier cosine and sine series, discrete convolution and the
corresponding convolution theorem relevant to this study.

The discrete Fourier cosine convolution (x ∗
FcDT

y)(n) [29] and the discrete Fourier sine convolution

(x ∗
FsDT

y)(n) [30] of two series x(n) and y(n) on N are defined as follows:

(x ∗
FcDT

y)(n) =
∞∑

m=1

x(m)[y(n + m) + y(|n − m|)] + x(0)y(n), n ≥ 0 (2.1)

and

(x ∗
FsDT

y)(n) =
∞∑

m=1

x(m)[y(|n − m|) − y(n + m)], n ≥ 0, (2.2)
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respectively. The following two convolution theorems fulfill

FcDT {(x ∗
FcDT

y)(n)}(w) = 2FcDT {x(n)}(w)FcDT {y(n)}(w) (2.3)

and
FsDT {(x ∗

FsDT
y)(n)}(w) = 2FsDT {x(n)}(w)FcDT {y(n)}(w), (2.4)

respectively, where FcDT denotes the FCS

FcDT x(n)(ω) =
x(0)

2
+

∞∑
n=1

x(n) cos(nω), ω ∈ [0, π], (2.5)

and FsDT denotes the FSS

FsDT x(n)(ω) =
∞∑

n=0

x(n) sin(nω), ω ∈ [0, π]. (2.6)

Let ℓp(N), 1 ≤ p < ∞, denote the space of sequences x = {x(n)} equipped with a norm

∥x∥p =

 ∞∑
n=1

|x(n)|p


1
p

< ∞, 1 ≤ p < ∞ (2.7)

and
∥x∥∞ = sup

n≥0
|xn| < ∞, (2.8)

where ℓ1(N) is equipped with a norm

∥x∥ = (
∞∑

n=1

|x(n)|),

and ℓo
p(N) is its subspace with x(0) = 0.

3. The convolution for FRCS and FRSS

In this section, we present the definitions of FRSS and FRCS, followed by three novel types of
convolution operations for FRSS and FRCS. We also explore the relationships among these defined
convolution operations and derive corresponding convolution theorems for FRCS and FRSS

Definition 3.1. Let α ∈ R, a sequence {x(n)} ∈ ℓ1(N) and the FRCS and the FRSS be defined as

S α
c x(n)(w) = 2

∞∑
n=0

x(n)Kφ(n,w) cos(cscφ · nw), w ∈ [0, π] (3.1)

and

S α
s x(n)(w) =

∞∑
n=0

x(n)Kφ(n,w) sin(cscφ · nw), w ∈ [0, π], (3.2)
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respectively, where Kφ(n,w) is given by

Kφ(n, ω) =


Aφe j n2+w2

2 cotφ, φ , kπ,
δ(n − w), φ = 2kπ,
δ(n + w), φ = (2k − 1)π,

and

Aφ =

√
1 − j cotφ

2π
, φ =

π

2
α.

Remark 3.1. When α = 2k − 1, k ∈ Z, the FCS in (3.1) and the FSS in (3.2) reduce to the classical
FCS in (2.5) and the FSS in (2.6), except for certain individual terms.

Definition 3.2. Let x(n), y(n) ∈ ℓ1(N) and the convolution operation ∗
c,α

for FRCS is defined as follows

(x ∗
c,α

y)(n) = Tn,φ

∞∑
m=0

x̃(m)[̃y(|n − m|) + ỹ(n + m)], (3.3)

where

Aφ =

√
1 − j cotφ

2π
, x̃(n) = x(n)eMn,φ , ỹ(n) = y(n)eMn,φ ,

Tn,φ = Aφe−Mn,φ , Mn,φ = j
n2

2
cotφ, φ =

π

2
α, α ∈ R.

Definition 3.3. Let x(n), y(n) ∈ ℓ1(N) and the convolution operation ∗
s,s,c,α

for FRSS is defined as

follows

(x ∗
s,s,c,α

y)(n) = Tn,φ

∞∑
m=0

x̃(m)[̃y(|n − m|) − ỹ(n + m)]. (3.4)

Definition 3.4. Let x(n), y(n) ∈ ℓ1(N) and the convolution operation
ω
∗

c,s,c,α
with the weight function

ω = sin(cscφ · w)

for FRCS is defined as follows

(x
ω
∗

c,s,c,α
y)(n) =

Tn,φ

4

∞∑
m=0

x̃(m)[̃y(|n + m − 1|) + ỹ(|n − m + 1|)

− ỹ(n + m + 1) − ỹ(|n − m − 1|)].

(3.5)

Remark 3.2. When α = 2k−1, k ∈ Z, the convolution operations defined in Definitions 3.2 and 3.3 can
be simplified to the convolution operations presented in (2.1) and (2.2), respectively. Additionally, the
convolution operation described in Definition 3.4 can be reduced to the Fourier weighted convolution
operation, except for certain individual terms.

The following convolution theorems for FRCS and FRSS are then derived in detail. Furthermore,
the relationship between

ω
∗

c,s,c,α
and ∗

s,s,c,α
is provided.
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Theorem 3.1. Let x(n), y(n) ∈ ℓ1(N), then

(x ∗
c,α

y)(n) ∈ ℓ1(N).

S α
c x and S α

c y denote the FRCS for x(n) and y(n). The convolution theorem for FRCS is obtained as
follows

S α
c

[
(x ∗

c,α
y)(n)
]

(w) = (S α
c x)(w)(S α

c y)(w), w ∈ [0, π], (3.6)

where

(S α
c y)(w) = (S α

c y)(w)e− j w2
2 cotφ.

Proof. We first prove the existence of the convolution operation (x ∗
c,α

y)(n)

∞∑
n=0

|(x ∗
c,α

y)(n)| ≤|Tn,φ|

∞∑
n=0

∞∑
m=0

|x̃(m)[̃y(|n − m|) + ỹ(n + m)]|

≤2|Tn,φ|

∞∑
m=0

|x̃(m)|
∞∑

n=0

|̃y(n)|

=2|Tn,φ|∥x∥1 · ∥y∥1;

(3.7)

therefore,

(x ∗
c,α

y)(n) ∈ ℓ1(N).

Next, we prove the convolution Theorem 3.1 and from the Definition 3.1, we have

(S α
c x)(w)(S α

c y)(w) =4
∞∑

a=0

x(a)Kφ(a,w) cos(cscφ · wa) ·
∞∑

b=0

y(b)Kφ(b,w) cos(cscφ · wb)

=4Nw,φA2
φ

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) · cos(cscφ · wa) cos(cscφ · wb)

=2Nw,φA2
φ

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) ·

[
cos(cscφ · w(a + b)) + cos(cscφ · w(a − b))

]
=2Nw,φA2

φ

 ∞∑
n=0

∞∑
m=n

e j n2+(m−n)2
2 cotφ · x(n)y(m − n) cos(cscφ · wm)

+

∞∑
n=0

∞∑
m=0

e j n2+(m+n)2
2 cotφ · x(n)y(m + n) cos(cscφ · wm)

+

∞∑
n=0

n∑
m=0

e j n2+(m−n)2
2 cotφ · x(n)y(n − m) cos(cscφ · wm)

 ,

(3.8)

where

Nw,φ = e jw2 cotφ.
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One finds

(S α
c x)(w)(S α

c y)(w) =2Nw,φA2
φ

∞∑
n=0

x(n) ·

 ∞∑
m=0

e j n2+(m−n)2
2 cotφy(|m − n|) cos(cscφ · wm)

+

∞∑
m=0

e j n2+(m+n)2
2 cotφy(m + n) cos(cscφ · wm)


=2Nw,φA2

φ

∞∑
m=0

cos(cscφ · wm) ·

 ∞∑
n=0

x(n)
[
e j n2+(m−n)2

2 cotφy(|m − n|)

+e j n2+(m+n)2
2 cotφy(m + n)

]}
.

(3.9)

From the Definition 3.2, we have

(S α
c x)(w)(S α

c y)(w) =2e j w2
2 cotφ ·

∞∑
m=0

[(x ∗
c,α

y)(m)]Kφ(m,w) cos(cscφ · wm)

=e j k2
2 cotφS α

c [(x ∗
c,α

y)(n)](w).

(3.10)

The proof is completed. □

Theorem 3.2. Let x(n), 5y(n) ∈ ℓ1(N), then

(x ∗
s,s,c,α

y)(n) ∈ ℓ1(N).

S α
s x, S α

c y denote the FRSS for x(n) and FRCS for y(n), respectively. The convolution theorem for FRSS
is satisfied

S α
s [(x ∗

s,s,c,α
y)(n)](w) = (S α

s x)(w)(S α
c y)(w), w ∈ [0, π], (3.11)

where
(S α

c y)(w) = (S α
c y)(w)e− j w2

2 cotφ.

Proof. The proof of Theorem 3.2 is similar to that of Theorem 3.1 and it is omitted. □

Remark 3.3. When α = 2k − 1, k ∈ Z, it is easy to verify that the convolution theorem for the FCS
and the FSS in (2.3) and (2.4) are both special cases of Theorems 3.1 and 3.2 in (3.6) and (3.11),
respectively.

Theorem 3.3. Let x(n), y(n) ∈ ℓ1(N), then

(x
ω
∗

c,s,c,α
y)(n) ∈ ℓ1(N).

S α
s x, S α

c y denote the FRSS for x(n) and the FRCS for y(n), respectively, then the convolution theorem
with a weight function

ω = sin(cscφ · w)

for FRCS is obtained

S α
c [(x

ω
∗

c,s,c,α
y)(n)](w) = sin(cscφ · w)(S α

s x)(w)(S α
c y)(w), w ∈ [0, π], (3.12)

where
(S α

c y)(w) = (S α
c y)(w)e− j w2

2 cotφ.
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Proof. The existence of the convolution operation (x
ω
∗

c,s,c,α
y)(n) is similar to that of Theorem 3.1. Next,

we will prove the convolution Theorem 3.3 and based on Definitions 3.1 and 3.4, we have

sin(cscφ · k)(S α
s x)(w)(S α

c y)(w)

= 2 sin(cscφ · w)
∞∑

a=0

x(a)Kφ(a,w) sin(cscφ · wa) ·
∞∑

b=0

y(b)Kφ(b,w) cos(cscφ · wb)

=
Nw,φA2

φ

2

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) · {cos[w(cscφ · (a + b − 1))] − cos[w(cscφ · (a + b + 1))]

+ cos[w(cscφ · (a − b − 1))] − cos[w(cscφ · (a − b + 1))]}

= −
Nw,φA2

φ

2
(F1 + F2 − F3 − F4),

(3.13)

where

F1 =

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) · cos[w(cscφ · (a + b + 1))],

F2 =

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) · cos[w(cscφ · (a − b + 1))],

F3 =

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) · cos[w(cscφ · (a − b − 1))],

F4 =

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) · cos[w(cscφ · (a + b − 1))].

(3.14)

Let a = n and a + b + 1 = m and we obtain

F1 =

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) cos[w(cscφ · (a + b + 1))]

=

∞∑
n=0

∞∑
m=n+1

e j n2+(m−n−1)2
2 cotφx(n)y(m − n − 1) · cos(cscφ · wm).

(3.15)

Similar to (3.15), we obtain

F2 =

∞∑
a=0

∞∑
b=0

e j a2+b2
2 cotφx(a)y(b) cos[w(cscφ · (a − b + 1))]

=

∞∑
n=0

∞∑
m=0

e j n2+(m+n+1)2
2 cotφx(n)y(m + n + 1) · cos(cscφ · wm)

+

∞∑
n=0

n+1∑
m=0

e j n2+(n−m+1)2
2 cotφx(n)y(n − m + 1) · cos(cscφ · wm),

(3.16)
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and from (3.15) and (3.16), we can derive

F1 + F2 =

∞∑
n=0

∞∑
m=0

e j n2+(m+n+1)2
2 cotφx(n)y(m + n + 1) · cos(cscφ · wm)

+

∞∑
n=0

∞∑
m=0

e j n2+(m−n−1)2
2 cotφ · x(n)y(|m − n − 1|) cos(cscφ · wm).

(3.17)

In a manner similar to (3.15)–(3.17), we have

F3 + F4 =

∞∑
n=0

∞∑
m=0

e j n2+(m+n−1)2
2 cotφx(n)y(|m + n − 1|) · cos(cscφ · wm)

+

∞∑
n=0

∞∑
m=0

e j n2+(m−n+1)2
2 cotφ · x(n)y(|m − n + 1|) cos(cscφ · wm),

(3.18)

and by (3.17) and (3.18), we can achieve

sin(cscφ · w)(S α
s x)(w)(S α

c y)(w) =
Nw,φA2

φ

2
(F3 + F4 − F1 − F2)

=2e j w2
2 cotφ

∞∑
m=0

(x
ω
∗

c,s,c,α
y)(m)Kφ(m,w) cos(cscφ · wm)

=e j w2
2 cotφS α

c [(x
ω
∗

c,s,c,α
y)(m)](w).

(3.19)

The proof is completed. □

4. Convolution relation of the fractional cosine and sine series

In this subsection, the convolution relation of
ω
∗

c,s,c,α
and ∗

s,s,c,α
will be presented as follows.

Theorem 4.1. Let x(n), y(n) ∈ ℓ1(N), and the convolution relation between
ω
∗

c,s,c,α
and ∗

s,s,c,α
satisfies the

following equation

(x
ω
∗

c,s,c,α
y)(n) =

1
4

(x ∗
s,s,c,α

y)(n + 1) −
1
4

(x ∗
s,s,c,α

y)(n − 1). (4.1)

Proof. From Definition 3.4, we have

(x
ω
∗

c,s,c,α
y)(n) =

AφeMn,φ

4

∞∑
m=0

x̃(m)[̃y(|n − m + 1|) − ỹ(n + m + 1)]

+
AφeMn,φ

4

∞∑
m=0

x̃(m)[̃y(|n + m − 1|) − ỹ(|n − m − 1|)],

(4.2)

and from Definition 3.3 and (4.2), we obtain

AφeMn,φ

4

∞∑
m=0

x̃(m)[̃y(|n − m + 1|) − ỹ(n + m + 1)] =
1
4

(x ∗
s,s,c,α

y)(n + 1). (4.3)
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Similarly to (4.3), we can achieve the following result

AφeMn,φ

4

∞∑
m=0

x̃(m)[̃y(|n + m − 1|) − ỹ(|n − m − 1|)]

= −
AφeMn,φ

4

∞∑
m=0

x̃(m)[̃y(|n − 1 − m|) − ỹ(n − 1 + m)]

= −
1
4

(x ∗
s,s,c,α

y)(n − 1).

(4.4)

From (4.3) and (4.4), we can obtain

(x
ω
∗

c,s,c,α
y)(n) =

1
4

(x ∗
s,s,c,α

y)(n + 1) −
1
4

(x ∗
s,s,c,α

y)(n − 1). (4.5)

The proof is completed. □

Based on Figure 1, it can be observed that the weighted convolution operation
ω
∗

c,s,c,α
defined in

Definition 3.4 can be equivalently represented by the convolution operation ∗
s,s,c,α

introduced in

Definition 3.3.

Figure 1. Convolution relationship between fractional cosine series and fractional sine series.

5. Application of the convolution theorems for FRCS and FRSS

The convolution equation is a crucial tool in various applications, including radiation energy
transfer, film or shaft vibration problems, as well as the resolution of electrostatic field and magnetic
field synthesis along with digital signal processing. The system of convolution equations represented
by (5.1) and (5.2) also arises when addressing challenges in engineering mechanics and digital signal
processing; thus, making it an active area of research interest. In this section, we will discuss two
specific types of convolution equations

x(n) + µ1

∞∑
m=0

η̃(m)y11(n,m) = p(n),

y(n) + µ2

∞∑
m=0

x̃(m)ψ21(n,m) = q(n)
(5.1)

and

z(n) + µ

 ∞∑
m=0

η̃(m)z12(n,m) +
∞∑

m=0

ψ̃(m)z21(n,m)

 = p(n), (5.2)
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where

y11(n,m) = Aφe j n2
2 cotφ
[
y(|m − n|) − y(m + n)

]
,

z12(n,m) = Aφe j n2
2 cotφ
[
z(|m − n|) + z(m + n)

]
,

z21(n,m) = Aφe j n2
2 cotφ
[
z(|m − n + 1|) + z(|m + n − 1|) − z(|m − n − 1|) − z(m + n + 1)

]
,

ψ21(n,m) = Aφe j n2
2 cotφ
[
ψ(|m − n + 1|) + ψ(|m + n − 1|) − ψ(|m − n − 1|) − ψ(m + n + 1)

]
(5.3)

and
η(m) = (η1 ∗

c,α
η2)(m), ψ(m) = (ψ1 ∗

s,s,c,α
ψ2)(m),

x̃(m) = Aφe j m2
2 cotφx(m), η̃(m) = Aφe j m2

2 cotφη(m), ψ̃(m) = Aφe j m2
2 cotφψ(m).

(5.4)

where µ, µ1, µ2 ∈ C, η̃, η, η1, η2, ψ̃, ψ, ψ1, ψ2, p, q ∈ ℓ1(N), x, y and z are unknown sequences in ℓ1(N),
m, n ∈ N.

Next, we will utilize the convolution operation along with the corresponding convolution theorem
proposed in this article to investigate the solution of the convolution equation. First, we will examine
a system of convolution Eq (5.1).

Theorem 5.1. Let x, y ∈ ℓ1(N), such that

1 − µ1µ2e− j w2
2 cotφS α

c (η
ω
∗

c,s,c,α
ψ)(w) , 0,

then the system of convolutions Eq (5.1) has a unique solution

x(n) =p(n) + (p ∗
s,s,c,α

u)(n) − µ1(η ∗
s,s,c,α

q)(n) − µ1(η ∗
s,s,c,α

q) ∗
s,s,c,α

u)(n) (5.5)

and
y(n) = q(n) + (q ∗

c,α
u)(n) − µ2(p

ω
∗

c,s,c,α
ψ)(n) − µ2((p

ω
∗

c,s,c,α
ψ) ∗

c,α
u)(n), (5.6)

where u ∈ ℓ1(N), and the following equality holds

(S α
c u)(w) =

µ1µ2S α
c (η

ω
∗

c,s,c,α
ψ)(w)

1 − µ1µ2e− j w2
2 cotφS α

c (η
ω
∗

c,s,c,α
ψ)(w)

. (5.7)

Proof. By applying the FRSS and FRCS to both sides of Eq (5.1) and simultaneously utilizing (5.3),
we can obtain (S α

s x)(w) + µ1e− j w2
2 cotφ(S α

s η)(w)(S α
c y)(w) = (S α

s p)(w),

µ2e− j w2
2 cotφ sin(cscφ · w)(S α

s x)(w)(S α
cψ)(w) + (S α

c y)(w) = (S α
c q)(w)

(5.8)

from
1 − µ1µ2e− j w2

2 cotφS α
c (η

ω
∗

c,s,c,α
ψ)(w) , 0.
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By applying the Wiener-Levi’s theorem [34] and (5.7), we can deduce

(S α
s x)(w) =

(S α
s p)(w) − µ1S α

s (η ∗
s,s,c,α

q)(w)

1 − µ1µ2e− j w2
2 cotφS α

c (η
ω
∗

c,s,c,α
ψ)(w)

= ((S α
s p)(w) − µ1S α

s (η ∗
s,s,c,α

q)(w)) · (1 + e− j w2
2 cotφS α

c (u)(w))

= (S α
s p)(w) + S α

s (p ∗
s,s,c,α

u)(w) − µ1S α
s (η ∗

s,s,c,α
q)(w) − µ1S α

s ((η ∗
s,s,c,α

q) ∗
s,s,c,α

u)(w).

(5.9)

Hence, we have

x(n) = p(n) + (p ∗
s,s,c,α

u)(n) − µ1(η ∗
s,s,c,α

q)(n) − µ1((η ∗
s,s,c,α

q) ∗
s,s,c,α

u)(n). (5.10)

Similarly, we have

(S α
c y)(w) =

(S α
c q)(w) − µ2S α

c (p
ω
∗

c,s,c,α
ψ)(w)

1 − µ1µ2e− j w2
2 cotφS α

c (η
ω
∗

c,s,c,α
ψ)(w)

=((S α
c q)(w) − µ2S α

c (p
ω
∗

c,s,c,α
ψ)(w)) · (1 + e− j w2

2 cotφS α
c (u)(w))

=(S α
c q)(w) + S α

c (q ∗
c,α

u)(w) − µ2S α
c (p

ω
∗

c,s,c,α
ψ)(w) − µ2S α

c ((p
ω
∗

c,s,c,α
ψ) ∗

c,α
u)(w);

(5.11)

therefore, we can achieve

y(n) = q(n) + (q ∗
c,α

u)(n) − µ2(p
ω
∗

c,s,c,α
ψ)(n) − µ2((p

ω
∗

c,s,c,α
ψ) ∗

c,α
u)(n). (5.12)

The proof is completed. □

The solutions of Eq (5.1) are illustrated in Figure 2, where the fractional order is α = 1.14 and
µ1 = µ2 = 0.5. The functions used in this paper are p(n) = sin n, q(n) = n, η(n) = cos n and ψ(n) = n2.

The solution to Eq (5.2) will be discussed below.

Theorem 5.2. Let y ∈ ℓ1(N), such that

1 + µe− j w2
2 cotφ(S α

c (η1 ∗
c,α
η2)(w) + (S α

c (ψ1
ω
∗

c,s,c,α
ψ2)(w)) , 0,

then Eq (5.2) has a unique solution

z(n) = p(n) − (p ∗
c,α

v)(n) (5.13)

and the following equality holds

(S α
c v)(w) =

µ(S α
c (η1 ∗

c,α
η2)(w) + S α

c (ψ1
ω
∗

c,s,c,α
ψ2)(w))

1 + µe− j w2
2 cotφ(S α

c (η1 ∗
c,α
η2)(w) + S α

c (ψ1
ω
∗

c,s,c,α
ψ2)(w))

. (5.14)
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Figure 2. The solution of Eq (5.1). (a)–(d): the input function p(n), q(n), η(n) and u(n),
respectively; (e): real part of solution x(n); (f): real part of solution y(n); (g): image part of
solution x(n); (h): image part of solution y(n).
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Proof. Applying the FRCS to both sides of Eq (5.2), we have

(S α
c z)(w)(1 + µe− j w2

2 cotφ(S α
c (η1 ∗

c,α
η2)(w) + S α

c (ψ1
ω
∗

c,s,c,α
ψ2)(w))) = (S α

c p)(w). (5.15)

Owing to the Wiener-Levi’s theorem [34], from (5.4) and (5.14), we can derive

(S α
c z)(w) = (S α

c p)(w) · (1 − e− j w2
2 cotφ(S α

c v)(w)), (5.16)

hence, we have
(S α

c z)(w) = (S α
c p)(w) − S α

c (p ∗
c,α

v)(w). (5.17)

The proof of Theorem 5.2 is completed. □

The solution of Eq (5.2) is also depicted in Figure 3, where the fractional order is α = 1.26, p(n) =
sin n and v(n) = n3.
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Figure 3. The solution of Eq (5.2). (a)-(b): represent the input function p(n) and v(n),
respectively; (c): real part of solution z(n); (d): image part of solution z(n).

Next, let us analyze the computational complexity of the solution achieved in convolution integral
Eqs (5.1) and (5.2) in detail. From (5.5), using the fast Fourier transform (FFT), (p ∗

s,s,c,α
u)(n),

(η ∗
s,s,c,α

q)(n) and (η ∗
s,s,c,α

q) ∗
s,s,c,α

u)(n) require 3
2 NlogN

2 , 3
2 NlogN

2 and 2NlogN
2 real number multiplications,
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respectively, for a discrete signal of size N. Therefore, the computational complexity of a solution
x(n) to Eq (5.1) can be obtained as O( 15

2 NlogN
2 ), which is much lower than that of the computational

complexity in fractional domain. Similarly, we can obtain the computational complexity of a solution
y(n) to Eq (5.1) and a solution z(n) to Eq (5.2) as O(15

2 NlogN
2 ) and O( 5

2 NlogN
2 ), respectively.

6. Conclusions

The FRCS and the FRSS, which are valuable tools in mathematics and signal processing, were
introduced in this paper. Convolution operations for FRCS and FRSS were proposed, along with a
detailed derivation of their corresponding convolution theorems. Furthermore, it was demonstrated
that our derived results encompassed all classical findings regarding Fourier cosine and sine series as
special cases. As an application, explicit solutions for two classes of convolution equations in the
FRCS and FRSS domains were explored. Additionally, the computational complexity of solving these
equations was also analyzed in detail.
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