Research article

Optimal decision of a disaster relief network equilibrium model

  • Received: 28 October 2023 Revised: 05 December 2023 Accepted: 13 December 2023 Published: 27 December 2023
  • MSC : 60H15, 90C25, 90B15

  • Frequent natural disasters challenge relief network efficiency. This paper introduces a stochastic relief network with limited path capacity, develops an equilibrium model based on cumulative prospect theory, and formulates it as a stochastic variational inequality problem to enhance emergency response and resource allocation efficiency. Using the NCP function, Lagrange function, and random variables, the model dynamically monitors disasters, enabling rational resource allocation for quick decision-making. Compared to traditional methods, our model significantly improves resource scheduling and reduces disaster response costs. Through a random network example, we validate the model's effectiveness in aiding intelligent decision-making for relief plans and resource allocation optimization.

    Citation: Cunlin Li, Wenyu Zhang, Hooi Min Yee, Baojun Yang. Optimal decision of a disaster relief network equilibrium model[J]. AIMS Mathematics, 2024, 9(2): 2657-2671. doi: 10.3934/math.2024131

    Related Papers:

  • Frequent natural disasters challenge relief network efficiency. This paper introduces a stochastic relief network with limited path capacity, develops an equilibrium model based on cumulative prospect theory, and formulates it as a stochastic variational inequality problem to enhance emergency response and resource allocation efficiency. Using the NCP function, Lagrange function, and random variables, the model dynamically monitors disasters, enabling rational resource allocation for quick decision-making. Compared to traditional methods, our model significantly improves resource scheduling and reduces disaster response costs. Through a random network example, we validate the model's effectiveness in aiding intelligent decision-making for relief plans and resource allocation optimization.



    加载中


    [1] C. Fisk, Some developments in equilibrium traffic assignment, Transport. Res. B-Meth., 14 (1980), 243–255. https://dx.doi.org/10.1016/0191-2615(80)90004-1 doi: 10.1016/0191-2615(80)90004-1
    [2] Y. Sheffi, Urban transportation networks: Equilibrium analysis with mathematical programming methods, Transprt. Sci., 14 (1985), 463–466. https://www.jstor.org/stable/25768196
    [3] W. H. Glanvile, W. F. Adams, G. T. Bennett, S. Green, D. A. D. C. Bellamy, R. J. Smeed, et al., Road Paper. Discussion. some theoretical aspects of road traffic research, P. I. Civil Eng., 1 (1952), 362–378. https://dx.doi.org/10.1680/ipeds.1952.11260 doi: 10.1680/ipeds.1952.11260
    [4] A. Nagurney, P. Daniele, L. S. Nagurney, Refugee migration networks and regulations: A multiclass, multipath variational inequality framework, J. Glob. Optim., 78 (2020), 627–649. https://dx.doi.org/10.1007/s10898-020-00936-6 doi: 10.1007/s10898-020-00936-6
    [5] I. V. Evstigneev, M. I. Taksar, Equilibrium states of random economies with locally interacting agents and solutions to stochastic variational inequalities in $ < L1, L\infty>$, Ann. Oper. Res., 114 (2002), 145–165. https://doi.org/10.1023/A:1021010220217 doi: 10.1023/A:1021010220217
    [6] A. Ganguly, K. Wadhwa, On random variational inequalities, J. Math. Anal. Appl., 206 (1997), 315–321. https://dx.doi.org/10.1006/jmaa.1997.5194 doi: 10.1006/jmaa.1997.5194
    [7] J. Gwinner, F. Raciti, On a class of random variational inequalities on random sets, Numer. Func. Anal. Opt., 27 (2006), 619–636. https://dx.doi.org/10.1080/01630560600790819 doi: 10.1080/01630560600790819
    [8] J. Gwinner, F. Raciti, Random equilibrium problems on networks, Math. Comput. Model., 43 (2006), 880–891. https://dx.doi.org/10.1016/j.mcm.2005.12.007 doi: 10.1016/j.mcm.2005.12.007
    [9] J. Gwinner, F. Raciti, Some equilibrium problems under uncertainty and random variational inequalities, J. Ann. Oper. Res., 200 (2012), 299–319. https://dx.doi.org/10.1007/s10479-012-1109-2 doi: 10.1007/s10479-012-1109-2
    [10] A. Nagurney, L. S. Nagurney, A mean-variance disaster relief supply chain network model for risk reduction with stochastic link costs, time targets, and demand uncertainty, Springer International Publishing, Switzerland, 2016.
    [11] A. Maugeri, F. Raciti, On general infinite dimensional complementarity problems, Optim. Lett., 2 (2008), 71–90. https://doi.org/10.1007/s11590-007-0044-7 doi: 10.1007/s11590-007-0044-7
    [12] A. Barbagallo, S. Pia, Weighted variational inequalities in non-pivot Hilbert spaces with applications, Comput. Optim. Appl., 48 (2011), 487–514. https://dx.doi.org/10.1007/s10589-009-9259-0 doi: 10.1007/s10589-009-9259-0
    [13] P. Daniele, Evolutionary variational inequalities and economic models for demand-supply markets, Math. Mod. Meth. Appl. S., 13 (2003), 471–489. https://dx.doi.org/10.1142/S021820250300260X doi: 10.1142/S021820250300260X
    [14] P. Daniele, Evolutionary variational inequalities applied to financial equilibrium problems in an environment of risk and uncertainty, Nonlinear Anal.-Theor., 63 (2005), e1645–e1653. https://dx.doi.org/10.1016/j.na.2004.12.006 doi: 10.1016/j.na.2004.12.006
    [15] M. B. Donato, M. Milasi, L. Scrimali, Walrasian equilibrium problem with memory term, J. Optimiz. Theory App., 151 (2011), 64–80. https://dx.doi.org/10.1007/s10957-011-9862-y doi: 10.1007/s10957-011-9862-y
    [16] A. Nagurney, D. Parkes, P. Daniele, The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355–375. https://dx.doi.org/10.1007/s10287-006-0027-7 doi: 10.1007/s10287-006-0027-7
    [17] A. Nagurney, Z. G. Liu, M. G. Cojocaru, P. Daniele, Dynamic electric power supply chains and transportation networks: An evolutionary variational inequality formulation, Transport. Res. E-Log., 43 (2007), 624–646. https://dx.doi.org/10.1016/j.tre.2006.03.002 doi: 10.1016/j.tre.2006.03.002
    [18] L. C. Ceng, P. Cubiotti, J. C. Yao, Existence of vector mixed variational inequalities in Banach spaces, Nonlinear Anal.-Theor., 70 (2009), 1239–1256. https://dx.doi.org/10.1016/j.na.2008.01.039 doi: 10.1016/j.na.2008.01.039
    [19] L. C. Ceng, S. Schaible, J. C. Yao, Existence of solutions for generalized vector variational-like inequalities, J. Optimiz. Theory App., 137 (2008), 121–133. https://dx.doi.org/10.1007/s10957-007-9336-4 doi: 10.1007/s10957-007-9336-4
    [20] L. C. Ceng, G. Y. Chen, X. X. Huang, J. C. Yao, Existence theorems for generalized vector variational inequalities with pseudomonotonicity and their applications, Taiwanese J. Math., 12 (2008), 151–172. https://dx.doi.org/10.11650/twjm/1500602494 doi: 10.11650/twjm/1500602494
    [21] L. C. Ceng, S. M. Guu, J. C. Yao, On generalized implicit vector equilibrium problems in Banach spaces, Comput. Math. Appl, 57 (2009), 1682–1691. https://dx.doi.org/10.1016/j.camwa.2009.02.026 doi: 10.1016/j.camwa.2009.02.026
    [22] L. C. Zeng, L. J. Lin, J. C. Yao, Auxiliary problem method for mixed variational-like inequalities, Taiwanese J. Math., 10 (2006), 515–529. https://dx.doi.org/10.11650/twjm/1500403840 doi: 10.11650/twjm/1500403840
    [23] P. Daniele, A. Maugeri, W. Oettli, Time-dependent traffic equilibria, J. Optimiz. Theory App., 103 (1999), 543–555. https://dx.doi.org/10.1023/A:1021779823196 doi: 10.1023/A:1021779823196
    [24] P. Daniele, S. Giuffr$\grave{e}$, Random variational inequalities and the random traffic equilibrium problem, J. Optimiz. Theory App., 167 (2015), 363–381. https://dx.doi.org/10.1007/s10957-014-0655-y doi: 10.1007/s10957-014-0655-y
    [25] M. Balaj, Intersection theorems for generalized weak KKM set-valued mappings with applications in optimization, Math. Nachr., 294 (2021), 1262–1276. https://dx.doi.org/10.1002/mana.201900243 doi: 10.1002/mana.201900243
    [26] K. Fan, A generalization of Tychonoff's fixed-point theorem, Math. Ann., 142 (1961), 305–310. https://dx.doi.org/10.1007/BF01353421 doi: 10.1007/BF01353421
    [27] J. P. Aubin, I. Ekeland, Applied nonlinear analysis, John Wiley and Sons, New York: Wlieg, 1984.
    [28] X. Chen, M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Math. Oper. Res., 30 (2005), 1022–1038. https://dx.doi.org/10.1287/moor.1050.0160 doi: 10.1287/moor.1050.0160
    [29] A. Fischer, A special newton-type optimization method, Optimization, 24 (1992), 269–284. https://dx.doi.org/10.1080/02331939208843795 doi: 10.1080/02331939208843795
    [30] J. R. Birge, Quasi-Monte Carlo approaches to option pricing, American Anthropologist, 1995.
    [31] M. D. Luca, A. Maugeri, Variational inequalities applied to the study of paradoxes in equilibrium problems frl:$^\dagger$$f:$^\dagger$ This work was supported by MURST and CNR $ef:, Optimization, 25 (1992), 249–259. https://dx.doi.org/10.1080/02331939208843822 doi: 10.1080/02331939208843822
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(970) PDF downloads(78) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog