Research article

Existence and energy decay rate of the solutions for the wave equation with a nonlinear distributed delay

  • Received: 07 December 2022 Revised: 20 February 2023 Accepted: 22 February 2023 Published: 02 March 2023
  • MSC : 35A01, 35B35, 35B40, 35L05

  • This paper is concerned with the wave equation having a nonlinear distributed delay. First, we prove the local existence of the solutions by using the semigroup theory, where the source term is globally Lipschitz. Next, we establish the global existence of solutions and the energy decay result under the local Lipschitz source and suitable conditions on the initial data.

    Citation: Tae Gab Ha, Seyun Kim. Existence and energy decay rate of the solutions for the wave equation with a nonlinear distributed delay[J]. AIMS Mathematics, 2023, 8(5): 10513-10528. doi: 10.3934/math.2023533

    Related Papers:

  • This paper is concerned with the wave equation having a nonlinear distributed delay. First, we prove the local existence of the solutions by using the semigroup theory, where the source term is globally Lipschitz. Next, we establish the global existence of solutions and the energy decay result under the local Lipschitz source and suitable conditions on the initial data.



    加载中


    [1] W. Aiello, H. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139–153. https://doi.org/10.1016/0025-5564(90)90019-U doi: 10.1016/0025-5564(90)90019-U
    [2] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Dordrecht: Springer, 1976.
    [3] A. Benaissa, A. Benaissa, S. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks, J. Math. Phys., 53 (2012), 123514. https://doi.org/10.1063/1.4765046 doi: 10.1063/1.4765046
    [4] A. Benaissa, A. Benguessoum, S. Messaoudi, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the non–linear internal feedback, Int. J. Dyn. Syst. Differ., 5 (2014), 1–26. https://doi.org/10.1504/IJDSDE.2014.067080 doi: 10.1504/IJDSDE.2014.067080
    [5] A. Benaissa, A. Guesmia, Energy decay for wave equations of $\varphi$-Laplacian type with weakly nonlinear dissipation, Electron. J. Differ. Eq., 2008 (2008), 1–22.
    [6] L. Bouzettouta, F. Hebhoub, K. Ghennam, S. Benferdi, Exponential stability for a nonlinear Timoshenko system with distributed delay, Int. J. Anal. Appl., 19 (2021), 77–90. https://doi.org/10.28924/2291-8639-19-2021-77 doi: 10.28924/2291-8639-19-2021-77
    [7] A. Choucha, S. Boulaaras, D. Ouchenane, Exponential decay of solutions for a viscoelastic coupled lame system with logarithmic source and distributed delay terms, Math. Methods Appl. Sci., 44 (2021), 4858–4880. https://doi.org/10.1002/mma.7073 doi: 10.1002/mma.7073
    [8] A. Choucha, D. Ouchenane, S. Boulaaras, Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Methods Appl. Sci., 43 (2020), 9983–10004. https://doi.org/10.1002/mma.6673 doi: 10.1002/mma.6673
    [9] I. Chueshov, M. Eller, I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. Part. Diff. Eq., 27 (2002), 1901–1951. https://doi.org/10.1081/PDE-120016132 doi: 10.1081/PDE-120016132
    [10] R. Datko, J. Lagnese, M. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152–156. https://doi.org/10.1137/0324007 doi: 10.1137/0324007
    [11] B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 585021. https://doi.org/10.1155/2015/585021 doi: 10.1155/2015/585021
    [12] N. Mezouar, S. Boulaaras, A. Allahem, Global existence of solutions for the viscoelastic Kirchhoff equation with logarithmic source terms, Complexity, 2020 (2020), 7105387. https://doi.org/10.1155/2020/7105387 doi: 10.1155/2020/7105387
    [13] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561–1585. https://doi.org/10.1137/060648891 doi: 10.1137/060648891
    [14] S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935–958. https://doi.org/10.57262/die/1356038593 doi: 10.57262/die/1356038593
    [15] S. Nicaise, C. Pignotti, J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Cont. Dyn.-S, 4 (2011), 693–722. https://doi.org/10.3934/dcdss.2011.4.693 doi: 10.3934/dcdss.2011.4.693
    [16] S. Nicaise, J. Valein, E. Fridaman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Cont. Dyn.-S, 2 (2009), 559–581. https://doi.org/10.3934/dcdss.2009.2.559 doi: 10.3934/dcdss.2009.2.559
    [17] S. Park, Global existence, energy decay and blow-up of solutions for wave equations with time delay and logarithmic source, Adv. Differ. Equ., 2020 (2020), 631. https://doi.org/10.1186/s13662-020-03037-6 doi: 10.1186/s13662-020-03037-6
    [18] L. Payne, D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. https://doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595
    [19] C. Raposo, H. Nguyen, J. Ribeiro, V. Barros, Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition, Electron. J. Differ. Eq., 2017 (2017), 279.
    [20] R. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence: American Mathematical Society, 1997.
    [21] H. Suh, Z. Bien, Use of time-delay actions in the controller design, IEEE T. Automat. Contr., 25 (1980), 600–603. https://doi.org/10.1109/TAC.1980.1102347 doi: 10.1109/TAC.1980.1102347
    [22] Y. Xie, G. Xu, Exponential stability of 1-d wave equation with the boundary time delay based on the interior control, Discrete Cont. Dyn.-S, 10 (2017), 557–579. https://doi.org/10.3934/dcdss.2017028 doi: 10.3934/dcdss.2017028
    [23] X. Yang, J. Zhang, Y. Lu, Dynamics of the nonlinear Timoshenko system with variable delay, Appl. Math. Optim., 83 (2021), 297–326. https://doi.org/10.1007/s00245-018-9539-0 doi: 10.1007/s00245-018-9539-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1059) PDF downloads(72) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog