Research article Special Issues

Direct quaternion method-based stability criteria for quaternion-valued Takagi-Sugeno fuzzy BAM delayed neural networks using quaternion-valued Wirtinger-based integral inequality

  • Received: 01 January 2023 Revised: 12 February 2023 Accepted: 17 February 2023 Published: 01 March 2023
  • MSC : 92B20, 93D05, 93D20, 03E72, 47S05

  • This paper investigates the global asymptotic stability problem for a class of quaternion-valued Takagi-Sugeno fuzzy BAM neural networks with time-varying delays. By applying Takagi-Sugeno fuzzy models, we first consider a general form of quaternion-valued Takagi-Sugeno fuzzy BAM neural networks with time-varying delays. Then, we apply the Cauchy-Schwarz algorithm and homeomorphism principle to obtain sufficient conditions for the existence and uniqueness of the equilibrium point. By utilizing suitable Lyapunov-Krasovskii functionals and newly developed quaternion-valued Wirtinger-based integral inequality, some sufficient criteria are obtained to guarantee the global asymptotic stability of the considered networks. Further, the results of this paper are presented in the form of quaternion-valued linear matrix inequalities, which can be solved using the MATLAB YALMIP toolbox. Two numerical examples are presented with their simulations to demonstrate the validity of the theoretical analysis.

    Citation: R. Sriraman, P. Vignesh, V. C. Amritha, G. Rachakit, Prasanalakshmi Balaji. Direct quaternion method-based stability criteria for quaternion-valued Takagi-Sugeno fuzzy BAM delayed neural networks using quaternion-valued Wirtinger-based integral inequality[J]. AIMS Mathematics, 2023, 8(5): 10486-10512. doi: 10.3934/math.2023532

    Related Papers:

  • This paper investigates the global asymptotic stability problem for a class of quaternion-valued Takagi-Sugeno fuzzy BAM neural networks with time-varying delays. By applying Takagi-Sugeno fuzzy models, we first consider a general form of quaternion-valued Takagi-Sugeno fuzzy BAM neural networks with time-varying delays. Then, we apply the Cauchy-Schwarz algorithm and homeomorphism principle to obtain sufficient conditions for the existence and uniqueness of the equilibrium point. By utilizing suitable Lyapunov-Krasovskii functionals and newly developed quaternion-valued Wirtinger-based integral inequality, some sufficient criteria are obtained to guarantee the global asymptotic stability of the considered networks. Further, the results of this paper are presented in the form of quaternion-valued linear matrix inequalities, which can be solved using the MATLAB YALMIP toolbox. Two numerical examples are presented with their simulations to demonstrate the validity of the theoretical analysis.



    加载中


    [1] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. U.S.A, 79 (1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554 doi: 10.1073/pnas.79.8.2554
    [2] M. A. Cohen, S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybern., 13 (1983), 815–826. https://doi.org/10.1109/TSMC.1983.6313075 doi: 10.1109/TSMC.1983.6313075
    [3] L. Chua, L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273-1290. https://doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [4] Q. Song, J. Cao, Stability analysis of impulsive Cohen-Grossberg neural network with unbounded discrete time-varying delays, Int. J. Neural Syst., 17 (2007), 407–417. https://doi.org/10.1142/S012906570700124X doi: 10.1142/S012906570700124X
    [5] B. Kosko, Bidirectional associative memories, IEEE Trans. Syst. Man Cybern., 18 (1988), 49–60. https://doi.org/10.1109/21.87054 doi: 10.1109/21.87054
    [6] K. Gopalsamy, X. Z. He, Delay-independent stability in bi-directional associative memory networks, IEEE Trans. Neural Netw., 5 (1994), 998–1002. https://doi.org/10.1109/72.329700 doi: 10.1109/72.329700
    [7] Q. Song, J. Cao, Global exponential stability and existence of periodic solutions in BAM networks with delays and reaction-diffusion terms, Chaos Soliton. Fract., 23 (2005), 421–430. https://doi.org/10.1016/j.chaos.2004.04.011 doi: 10.1016/j.chaos.2004.04.011
    [8] J. H. Park, C. H. Park, O. M. Kwon, S. M. Lee, A new stability criterion for bidirectional associative memory neural networks of neutral-type, Appl. Math. Comput., 199 (2008), 716–722. https://doi.org/10.1016/j.amc.2007.10.032 doi: 10.1016/j.amc.2007.10.032
    [9] J. H. Park, O. M. Kwon, Delay-dependent stabilility criterion for bidirectional associative memory neural networks with interval time-varying delays, Modern Phys. Lett. B, 23 (2009), 35–46. https://doi.org/10.1142/S0217984909017807 doi: 10.1142/S0217984909017807
    [10] Q. Zhu, C. Huang, X. Yang, Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays, Nonlinear Anal. Hybrid Syst., 5 (2011), 52–57. https://doi.org/10.1016/j.nahs.2010.08.005 doi: 10.1016/j.nahs.2010.08.005
    [11] J. Li, W. Zhou, Z. Yang, State estimation and input-to-state stability of impulsive stochastic BAM neural networks with mixed delays, Neurocomputing, 227 (2017), 37–45. https://doi.org/10.1016/j.neucom.2016.08.101 doi: 10.1016/j.neucom.2016.08.101
    [12] Y. Zhao, J. Kurths, L. Duan, Input-to-state stability analysis for memristive BAM neural networks with variable time delays, Phys. Lett. A, 383 (2019), 1143–1150. https://doi.org/10.1016/j.physleta.2019.01.015 doi: 10.1016/j.physleta.2019.01.015
    [13] Z. Wang, L. Huang, Global stability analysis for delayed complex-valued BAM neural networks, Neurocomputing, 173 (2016), 2083–2089. https://doi.org/10.1016/j.neucom.2015.09.086 doi: 10.1016/j.neucom.2015.09.086
    [14] R. Guo, Z. Zhang, X. Liu, C. Lin, Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays, Appl. Math. Comput., 311 (2017), 100–117. https://doi.org/10.1016/j.amc.2017.05.021 doi: 10.1016/j.amc.2017.05.021
    [15] J. Liu, J. Jian, Global dissipativity of a class of quaternion-valued BAM neural networks with time delay, Neurocomputing, 349 (2019), 123–132. https://doi.org/10.1016/j.neucom.2019.03.026 doi: 10.1016/j.neucom.2019.03.026
    [16] R. Zhao, B. Wang, J. Jian, Lagrange stability of BAM quaternion-valued inertial neural networks via auxiliary function-based integral inequalities, Neural Process. Lett., 54 (2022), 1351–1369. https://doi.org/10.1007/s11063-021-10685-6 doi: 10.1007/s11063-021-10685-6
    [17] Z. Zhang, Z. Quan, Global exponential stability via inequality technique for inertial BAM neural networks with time delays, Neurocomputing, 151 (2015), 1316–1326. https://doi.org/10.1016/j.neucom.2014.10.072 doi: 10.1016/j.neucom.2014.10.072
    [18] J. Zhang, S. Zhu, N. Lu, S. Wen, Multistability of state-dependent switching neural networks with discontinuous nonmonotonic piecewise linear activation functions, Neurocomputing, 437 (2021), 300–311. https://doi.org/10.1016/j.neucom.2021.01.046 doi: 10.1016/j.neucom.2021.01.046
    [19] S. Zhu, Y. Shen, Robustness analysis of global exponential stability of neural networks with Markovian switching in the presence of time-varying delays or noises, Neural Comput. Appl., 23 (2013), 1563–1571. https://doi.org/10.1007/s00521-012-1105-0 doi: 10.1007/s00521-012-1105-0
    [20] R. Sriraman, R. Samidurai, Global asymptotic stability analysis for neutral-type complex-valued neural networks with random time-varying delays, Int. J. Syst. Sci., 50 (2019), 1742–1756. https://doi.org/10.1080/00207721.2019.1623340 doi: 10.1080/00207721.2019.1623340
    [21] R. Vijay Aravind, P. Balasubramaniam, Stochastic stability of fractional-order Markovian jumping complex-valued neural networks with time-varying delays, Neurocomputing, 439 (2021), 122–133. https://doi.org/10.1016/j.neucom.2021.01.053 doi: 10.1016/j.neucom.2021.01.053
    [22] R. Sriraman, Y. Cao, R. Samidurai, Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays, Math. Comput. Simul., 171 (2020), 103–118. https://doi.org/10.1016/j.matcom.2019.04.001 doi: 10.1016/j.matcom.2019.04.001
    [23] Z. Zhang, T. Zheng, Global asymptotic stability of periodic solutions for delayed complex-valued Cohen-Grossberg neural networks by combining coincidence degree theory with LMI method, Neurocomputing, 289 (2018), 220–230. https://doi.org/10.1016/j.neucom.2018.02.033 doi: 10.1016/j.neucom.2018.02.033
    [24] Y. Liu, Y. Zheng, J. Lu, J. Cao, L. Rutkowski, Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1022–1035. https://doi.org/10.1109/TNNLS.2019.2916597 doi: 10.1109/TNNLS.2019.2916597
    [25] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Philos. Soc., 85 (1979), 199–225. https://doi.org/10.1017/S0305004100055638 doi: 10.1017/S0305004100055638
    [26] T. Isokawa, T. Kusakabe, N. Matsui, F. Peper, Quaternion neural network and its application, Knowl.-Based Intell. Eng. Syst., 2774 (2003), 318–324. https://doi.org/10.1007/978-3-540-45226-3-44 doi: 10.1007/978-3-540-45226-3-44
    [27] T. Parcollet, M. Morchid, G. Linares, A survey of quaternion neural networks, Artif. Intell. Rev., 53 (2020), 2957–2982. https://doi.org/10.1007/s10462-019-09752-1 doi: 10.1007/s10462-019-09752-1
    [28] R. Sriraman, G. Rajchakit, C. P. Lim, P. Chanthorn, R. Samidurai, Discrete-time stochastic quaternion-valued neural networks with time delays: An asymptotic stability analysis, Symmetry, 12 (2020), 936. https://doi.org/10.3390/sym12060936 doi: 10.3390/sym12060936
    [29] X. You, Q. Song, J. Liang, Y. Liu, F. E. Alsaadi, Global $\mu$-stability of quaternion-valued neural networks with mixed time-varying delays, Neurocomputing, 290 (2018), 12–25. https://doi.org/10.1016/j.neucom.2018.02.030 doi: 10.1016/j.neucom.2018.02.030
    [30] Q. Song, L. Long, Z. Zhao, Y. Liu, F. E. Alsaadi, Stability criteria of quaternion-valued neutral-type delayed neural networks, Neurocomputing, 412 (2020), 287–294. https://doi.org/10.1016/j.neucom.2020.06.086 doi: 10.1016/j.neucom.2020.06.086
    [31] X. You, S. Dian, R. Guo, S. Li, Exponential stability analysis for discrete-time quaternion-valued neural networks with leakage delay and discrete time-varying delays, Neurocomputing, 430 (2021), 71–81. https://doi.org/10.1016/j.neucom.2020.12.021 doi: 10.1016/j.neucom.2020.12.021
    [32] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE T. Syst. Man CY-S., 15 (1985), 116–132. https://doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399
    [33] L. Wang, H. K. Lam, New stability criterion for continuous-time Takagi-Sugeno fuzzy systems with time-varying delay, IEEE T. Cybernetics., 49 (2019), 1551–1556. https://doi.org/10.1109/TCYB.2018.2801795 doi: 10.1109/TCYB.2018.2801795
    [34] Y. Y. Hou, T. L. Liao, J. J. Yan, Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time-varying delays, IEEE T. Syst. Man CY-S., 37 (2007), 720–726. https://doi.org/10.1109/TSMCB.2006.889628 doi: 10.1109/TSMCB.2006.889628
    [35] C. K. Ahn, Delay-dependent state estimation for T-S fuzzy delayed Hopfield neural networks, Nonlinear Dyn., 61 (2010), 483–489. https://doi.org/10.1007/s11071-010-9664-z doi: 10.1007/s11071-010-9664-z
    [36] J. Jian, P. Wan, Global exponential convergence of fuzzy complex-valued neural networks with time-varying delays and impulsive effects, Fuzzy Sets Syst., 338 (2018), 23–39. https://doi.org/10.1016/j.fss.2017.12.001 doi: 10.1016/j.fss.2017.12.001
    [37] Z. Zhang, J. Cao, Finite-time synchronization for fuzzy inertial neural networks by maximum value approach, IEEE Trans. Fuzzy Syst., 30 (2022), 1436–1446. https://doi.org/10.1109/TFUZZ.2021.3059953 doi: 10.1109/TFUZZ.2021.3059953
    [38] S. Zhu, Y. Shen, Robustness analysis for connection weight matrices of global exponential stable time varying delayed recurrent neural networks, Neurocomputing, 113 (2013), 220–226. https://doi.org/10.1016/j.neucom.2013.01.006 doi: 10.1016/j.neucom.2013.01.006
    [39] G. Rajchakit, P. Chanthorn, P. Kaewmesri, R. Sriraman, C. P. Lim, Global Mittag-Leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks, Mathematics, 8 (2020), 422. https://doi.org/10.3390/math8030422 doi: 10.3390/math8030422
    [40] U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, R. Samidurai, C. P. Lim, Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks, Mathematics, 8 (2020), 801. https://doi.org/10.3390/math8050801 doi: 10.3390/math8050801
    [41] J. Wang, H. Jiang, T. Ma, C. Hu, Delay-dependent dynamical analysis of complex-valued memritive neural networks: Continuous-time and discrete-time cases, Neural Netw., 101 (2018), 33–46. https://doi.org/10.1016/j.neunet.2018.01.015 doi: 10.1016/j.neunet.2018.01.015
    [42] C. A. Popa, Global $\mu$-stability of neutral-type impulsive complex-valued BAM neural networks with leakage delay and unbounded time-varying delays, Neurocomputing, 376 (2020), 73–94. https://doi.org/10.1016/j.neucom.2019.09.008 doi: 10.1016/j.neucom.2019.09.008
    [43] P. G. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [44] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [45] Z. Zhang, J. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 1476–1485. https://doi.org/10.1109/TNNLS.2018.2868800 doi: 10.1109/TNNLS.2018.2868800
    [46] Z. Zhang, L. Ren, New sufficient conditions on global asymptotic synchronization of inertial delayed neural networks by using integrating inequality techniques, Nonlinear Dyn., 95 (2018), 905–917. https://doi.org/10.1007/s11071-018-4603-5 doi: 10.1007/s11071-018-4603-5
    [47] X. Chen, Z. Li, Q. Song, J. Hu, Y. Tan, Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Netw., 91 (2017), 55–65. https://doi.org/10.1016/j.neunet.2017.04.006 doi: 10.1016/j.neunet.2017.04.006
    [48] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21–57. https://doi.org/10.1016/0024-3795(95)00543-9 doi: 10.1016/0024-3795(95)00543-9
    [49] X. Chen, Q. Song, State estimation for quaternion-valued neural networks with multiple time delays, IEEE T. Syst. Man Cy-S., 49 (2019), 2201–2209. https://doi.org/10.1109/TSMC.2017.2776940 doi: 10.1109/TSMC.2017.2776940
    [50] Z. Tu, Y. Zhao, N. Ding, Y. Feng, W. Zhang, Stability analysis of quaternion-valued neural networks with both discrete and distributed delays, Appl. Math. Comput., 343 (2019), 342–353. https://doi.org/10.1016/j.amc.2018.09.049 doi: 10.1016/j.amc.2018.09.049
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1636) PDF downloads(98) Cited by(8)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog