Research article

Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection

  • Received: 27 February 2023 Revised: 11 May 2023 Accepted: 15 May 2023 Published: 19 May 2023
  • MSC : 53B20, 53C07, 53C35

  • Let $ (M, g) $ be an $ n $-dimensional (pseudo-)Riemannian manifold and $ TM $ be its tangent bundle $ TM $ equipped with the complete lift metric $ ^{C}g $. First, we define a Ricci quarter-symmetric metric connection $ \overline{\nabla } $ on the tangent bundle $ TM $ equipped with the complete lift metric $ ^{C}g $. Second, we compute all forms of the curvature tensors of $ \overline{\nabla } $ and study their properties. We also define the mean connection of $ \overline{\nabla } $. Ricci and gradient Ricci solitons are important topics studied extensively lately. Necessary and sufficient conditions for the tangent bundle $ TM $ to become a Ricci soliton and a gradient Ricci soliton concerning $ \overline{\nabla } $ are presented. Finally, we search conditions for the tangent bundle $ TM $ to be locally conformally flat with respect to $ \overline{\nabla } $.

    Citation: Yanlin Li, Aydin Gezer, Erkan Karakaş. Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection[J]. AIMS Mathematics, 2023, 8(8): 17335-17353. doi: 10.3934/math.2023886

    Related Papers:

  • Let $ (M, g) $ be an $ n $-dimensional (pseudo-)Riemannian manifold and $ TM $ be its tangent bundle $ TM $ equipped with the complete lift metric $ ^{C}g $. First, we define a Ricci quarter-symmetric metric connection $ \overline{\nabla } $ on the tangent bundle $ TM $ equipped with the complete lift metric $ ^{C}g $. Second, we compute all forms of the curvature tensors of $ \overline{\nabla } $ and study their properties. We also define the mean connection of $ \overline{\nabla } $. Ricci and gradient Ricci solitons are important topics studied extensively lately. Necessary and sufficient conditions for the tangent bundle $ TM $ to become a Ricci soliton and a gradient Ricci soliton concerning $ \overline{\nabla } $ are presented. Finally, we search conditions for the tangent bundle $ TM $ to be locally conformally flat with respect to $ \overline{\nabla } $.



    加载中


    [1] A. Friedmann, J. A. Schouten, Über die geometrie der halbsymmetrischen Übertragungen, Math. Z., 21 (1924), 211–223. https://doi.org/10.1007/BF01187468 doi: 10.1007/BF01187468
    [2] H. A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc., S2-34 (1932), 27–50. https://doi.org/10.1112/plms/s2-34.1.27 doi: 10.1112/plms/s2-34.1.27
    [3] S. K. Hui, On $\phi$-pseudo symmetric Kenmotsu manifolds with respect to quarter-symmetric metric connection, Appl. Sci., 15 (2013), 71–84.
    [4] S. K. Hui, R. Prasad, D. Chakraborty, Ricci solitons on Kenmotsu Manifolds with respect to quarter symmetric non-metric $\phi$-connection, Ganita, 67 (2017), 195–204.
    [5] S. K. Hui, R. S. Lemence, On generalized $\phi$-recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection, Kyungpook Math. J., 58 (2018), 347–359. http://dx.doi.org/10.5666/KMJ.2018.58.2.347 doi: 10.5666/KMJ.2018.58.2.347
    [6] S. K. Hui, L. I. Piscoran, T. Pal, Invariant submanifolds of (LCS)n-manifolds with respect to quarter symmetric metric connection, Acta Math. Univ. Comenianae, 87 (2018), 205–221.
    [7] S. K. Hui, A. Abolarinwa, M. A. Khan, F. Mofarreh, A. Saha, S. Bhattacharyya, Li-Yau-type gradient estimate along geometric flow, Mathematics, 11 (2023), 1364. https://doi.org/10.3390/math11061364 doi: 10.3390/math11061364
    [8] S. K. Hui, J. Roy, Invariant and anti-invariant submanifolds of special quasi-Sasakian manifolds, J. Geom., 109 (2018), 37. https://doi.org/10.1007/s00022-018-0442-2 doi: 10.1007/s00022-018-0442-2
    [9] S. K. Hui, S. Uddin, A. H. Alkhaldi, P. Mandal, Invariant submanifolds of generalized Sasakian-space-forms, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850149. https://doi.org/10.1142/S0219887818501499 doi: 10.1142/S0219887818501499
    [10] S. K. Hui, D. Chakraborty, Ricci almost solitons on Concircular Ricci pseudosymmetric $\beta $-Kenmotsu manifolds, Hacettepe J. Math. Stat., 47 (2018), 579–587.
    [11] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.), 29 (1975), 249–254.
    [12] D. Kamilya, U. C. De, Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math., 26 (1995), 29–34.
    [13] Y. Li, S. Liu, Z. Wang, Tangent developables and Darboux developables of framed curves, Topol. Appl., 301 (2021), 107526. http://dx.doi.org/10.1016/j.topol.2020.107526 doi: 10.1016/j.topol.2020.107526
    [14] Y. Li, M. Erdogdu, A. Yavuz, Differential geometric approach of Betchov-Da Rios soliton equation, Hacet. J. Math. Stat., 52 (2023), 114–125. https://doi.org/10.15672/hujms.1052831 doi: 10.15672/hujms.1052831
    [15] Y. Li, K. Eren, K. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Math., 8 (2023), 2226–2239. http://dx.doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115
    [16] Y. Li, Z. Chen, S. Nazra, R. A. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. http://dx.doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277
    [17] Y. Li, M. T. Aldossary, R. A. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-space, Symmetry, 15 (2023), 173. http://dx.doi.org/10.3390/sym15010173 doi: 10.3390/sym15010173
    [18] Y. Li, A. Abdel-Salam, M. Saad, Primitivoids of curves in Minkowski plane, AIMS Math., 8 (2023), 2386–2406. http://dx.doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123
    [19] Y. Li, O. Tuncer, On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space, Math. Meth. Appl. Sci., 46 (2023), 11157–11171. http://dx.doi.org/10.1002/mma.9173 doi: 10.1002/mma.9173
    [20] Y. Li, A. Abolarinwa, A. Alkhaldi, A. Ali, Some inequalities of Hardy type related to Witten-Laplace operator on smooth metric measure spaces, Mathematics, 10 (2022), 4580. http://dx.doi.org/10.3390/math10234580 doi: 10.3390/math10234580
    [21] Y. Li, A. Alkhaldi, A. Ali, R. A. Abdel-Baky, M. Saad, Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space, AIMS Math., 8 (2023), 13875–13888. http://dx.doi.org/10.3934/math.2023709 doi: 10.3934/math.2023709
    [22] Y. Li, D. Ganguly, Kenmotsu metric as conformal $\eta$-Ricci soliton, Mediterr. J. Math., 20 (2023), 193. https://doi.org/10.1007/s00009-023-02396-0 doi: 10.1007/s00009-023-02396-0
    [23] Y. Li, S. K. Srivastava, F. Mofarreh, A. Kumar, A. Ali, Ricci soliton of $\mathscr{CR}$-warped product manifolds and their classifications, Symmetry, 15 (2023), 976. https://doi.org/10.3390/sym15050976 doi: 10.3390/sym15050976
    [24] Y. Li, P. Laurian-Ioan, L. Alqahtani, A. Alkhaldi, A. Ali, Zermelo's navigation problem for some special surfaces of rotation, AIMS Math., 8 (2023), 16278–16290. https://doi.org/10.3934/math.2023833 doi: 10.3934/math.2023833
    [25] Y. Li, Z. Wang, Lightlike tangent developables in de Sitter 3-space, J. Geom. Phys., 164 (2021), 104188. https://doi.org/10.1016/j.geomphys.2021.104188 doi: 10.1016/j.geomphys.2021.104188
    [26] Y. Li, Z. Wang, T. H. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras, 31 (2021), 19. https://doi.org/10.1007/s00006-020-01097-1 doi: 10.1007/s00006-020-01097-1
    [27] Y. Li, A. Çalışkan, Quaternionic shape operator and rotation matrix on ruled surfaces, Axioms, 12 (2023), 486. https://doi.org/10.3390/axioms12050486 doi: 10.3390/axioms12050486
    [28] Y. Li, S. G. Mazlum, S. Şenyurt, The Darboux trihedrons of timelike surfaces in the Lorentzian 3-space, Int. J. Geom. Methods Mod. Phys., 20 (2023), 2350030-82. https://doi.org/10.1142/S0219887823500305 doi: 10.1142/S0219887823500305
    [29] S. G. Mazlum, S. Şenyurt, L. Grilli, The invariants of dual parallel equidistant ruled surfaces, Symmetry, 15 (2023), 206. https://doi.org/10.3390/sym15010206 doi: 10.3390/sym15010206
    [30] S. G. Mazlum, Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space, Filomat, 37 (2023), 5735–5749. https://doi.org/10.2298/FIL2317735G doi: 10.2298/FIL2317735G
    [31] S. G. Mazlum, S. Şenyurt, L. Grilli, The dual expression of parallel equidistant ruled surfaces in Euclidean 3-space, Symmetry, 14 (2022), 1062. https://doi.org/10.3390/sym14051062 doi: 10.3390/sym14051062
    [32] S. Şenyurt, S. G. Mazlum, Spacelike surface geometry, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750118. https://doi.org/10.1142/S0219887817501183
    [33] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y)\cdot R = 0$. I, J. Differ. Geom., 17 (1982), 531–582.
    [34] K. Yano, On semi symmetric metric connection, Rev. Roum. Math. Pures Appl., 15 (1970), 1579–1586.
    [35] K. Yano, J. Imai, Quarter-symmetric connection and their curvature tensors, Tensor (N.S.), 38 (1982), 13–18.
    [36] K. Yano, S. Ishihara, Tangent and cotangent bundles, New York: Marcel Dekker, Inc., 1973.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1333) PDF downloads(167) Cited by(23)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog