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1. Introduction

The notion of a semi-symmetric linear connection on a differentiable manifold was introduced by
Friedmann and Schouten in [1]. Using Hayden’s idea [2] of a metric connection with torsion, Yano [34]
searched properties of a semi-symmetric metric connection on a Riemannian manifold. He proved that
a Riemannian manifold endowed with the semi-symmetric metric connection has a vanishing curvature
tensor, if and only if, the Riemannian manifold is conformally flat. Later, Golab [11] defined and
studied quarter-symmetric connections on differentiable manifolds with linear connections. With this
in hand, Yano and Imai [35] gave the most general form of quarter-symmetric metric connections on
Riemannian, Hermitian and Kaehlerian manifolds and studied its applications. If the torsion tensor T
of a connection is of the form
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T (X,Y) = u(Y)φX − u(X)φY , (1.1)

then the linear connection is said to be a quarter-symmetric connection. In here, u is a non-zero
1-form, φ is a (1, 1)−tensor, and X,Y are vector fields. In particular, if φ = id, then the quarter-
symmetric connection reduces to the semi-symmetric connection. Thus, the notion of a quarter-
symmetric connection can be viewed as a generalization of the idea of a semi-symmetric connection.
Here, it is obvious that a quarter-symmetric metric connection is a Hayden connection in the form of a
torsion tensor (1.1).

Also, if we take the φ tensor as a (1, 1) type Ricci tensor defined by

g(φX,Y) = R(X,Y),

then the quarter-symmetric connection is called a Ricci quarter-symmetric connection. If a Ricci
quarter-symmetric connection ∇ on a Riemannian manifold satisfies the condition

(∇Xg)(Y,Z) = 0,

then ∇ is said to be a Ricci quarter-symmetric metric connection (briefly RQSMC) for all vector fields
X,Y,Z on M. Kamilya and De presented the concept of a RQSMC on a Riemannian manifold and
found necessary and sufficient conditions for the symmetry of the Ricci tensor of a RQSMC [12].
Also, they studied an Einstein manifold admitting a Ricci quarter-symmetric metric connection whose
torsion tensor is defined by means of the Ricci tensor of a Riemannian metric.

Ricci solitons became popular after Grigori Perelman applied Ricci solitons to solve the long-
standing Poincare conjecture posed in 1904. The notion of Ricci soliton appeared after Hamilton
introduced the Ricci flow in 1982. Let us start with M being a Riemannian manifold with a Riemannian
metric g. A Ricci flow satisfies the following equation

∂

∂t
g(t) = −2Ric(g(t)),

where t is the time and Ric denotes the Ricci tensor of M. Ricci solitons correspond to self-similar
solutions of Ricci flow, and they model the formation of singularities in the Ricci flow. A smooth
vector field V on a Riemannian manifold (M, g) is said to define a Ricci soliton if it satisfies

1
2

LVg + Ric = λg,

where LVg is the Lie derivative of the Riemannian metric g with respect to V and λ is a constant. We
shall denote a Ricci soliton by triple (g,V, λ). A Ricci soliton is called shrinking, steady or expanding
according as λ > 0, λ = 0, or λ < 0, respectively. Also, a Ricci soliton is called a gradient Ricci soliton
if its potential vector field V is the gradient of some smooth function f on M.

In this paper, first, we shall define a RQSMC on the tangent bundle equipped with complete lift
metric over a pseudo-Riemannian manifold. Second, we find all kinds of curvature tensors and study
some properties of them. We investigate mean connections of the RQSMC. After that, we investigate
some conditions for a vector field Ṽ on T M, such that it becomes (Cg, Ṽ , λ) a Ricci soliton and gradient
Ricci soliton. Finally, we study conditions for the tangent bundle T M to be locally conformally flat
with respect to the RQSMC.
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2. Preliminaries

For all the details about this section, we refer to [36]. Let M be an n−dimensional differentiable
manifold of class C∞ and T M its tangent bundle. The natural projection defined by

π : T M → M

P̃ → π(P̃) = P

determines the correspondence of (P̃ → P) for any point P ∈ M. The set π−1(P) = P̃ ∈ TPM is
called fibre on P ∈ M. Coordinate systems in M are denoted by (U, xh), where U is the coordinate
neighborhood and (xh), h = 1, ..., n are the coordinate functions. Let (yh) = (xh), h = n + 1, ..., 2n be
the Cartesian coordinates in each tangent space TPM at P ∈ M with respect to natural basis

{
∂
∂xh |P

}
,

where P is an arbitrary point in U with local coordinates (xh). Then, we can introduce local coordinates
(xh, yh) on the open set π−1(U) ⊂ T M. The coordinate system of (xh, yh) = (xh, xh) is called induced
coordinates on π−1(U) from (U, xh). In the paper, we use Einstein’s convention on repeated indices.

Let X = Xh ∂
∂xh be the local expression in U of a vector field X on M. Given a (torsion-free) linear

connection ∇ on M, the vertical lift V X and the horizontal lift HX of X are respectively given by

V X = Xh∂h,

and
HX = Xh∂h − ysΓh

skXk∂h

with respect to the induced coordinates, where ∂h = ∂
∂xh , ∂h = ∂

∂yh and Γh
jk are the coefficients of the

connection ∇. Through these lifts and the connection ∇, we can introduce on each induced coordinate
neighbourhood π−1(U) of T M a frame field which consists of the following 2n linearly independent
vector fields

E j = ∂ j − ysΓh
s j∂h,

E j = ∂ j.

We are calling it as the adapted frame and it will be written as
{
Eβ

}
=

{
E j, E j

}
[36]. With respect to

adapted frame
{
Eβ

}
, the vertical lift V X and the horizontal lift HX of X is expressed by [36]

HX = X jE j,
V X = X jE j.

3. Ricci quarter symmetric metric connection on the tangent bundle with the complete lift
metric

3.1. The Ricci quarter symmetric metric connection

A linear connection ∇ on an n−dimensional differentiable manifold M is said to be a Ricci quarter-
symmetric connection if its torsion tensor T satisfies

T (X,Y) = φ(Y)LX − φ(X)LY,
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where φ is a non-zero 1−form, L is the (1, 1) Ricci tensor defined by

g(LX,Y) = R(X,Y)

and R is the Ricci tensor of M [12]. The tensor T denotes the torsion tensor of ∇, that is,

T (X,Y) = ∇XY − ∇Y X − [X,Y]

for all vector fields X,Y on M. On a (pseudo-)Riemannian manifold (M, g), a linear connection ∇ is
called a metric connection if

∇g = 0.

A linear connection ∇ is said to be a RQSMC if it is both Ricci quarter-symmetric and metric
connection. If ∇ is the Levi-Civita connection of M then a RQSMC is given by

∇XY = ∇XY + φ(Y)LX − T (X,Y)ρ,

where φ(X) = g(X, ρ).
Let M be an n−dimensional pseudo-Riemannian manifold with a pseudo-Riemannian metric g and

let T M be its tangent bundle. The complete lift metric Cg on T M is defined as follows:

Cg
(

HX,H Y
)

= 0,
Cg

(
HX,V Y

)
= Cg

(
VX,H Y

)
= g (X,Y) ,

Cg
(

VX,V Y
)

= 0,

for all vector fields X and Y on M [36]. Cg is a pseudo-Riemannian metric on T M. The covariant and
contravariant components of the complete lift metric Cg on T M are respectively given in the adapted
local frame by

Cgαβ =

(
0 gi j

gi j 0

)
and

Cgαβ =

(
0 gi j

gi j 0

)
.

For the Levi-Civita connection C∇ of the complete lift metric Cg, we have the following proposition.

Proposition 1. The Levi-Civita connection C∇ of (T M,C g) is given by
C∇Ei E j = Γk

i jEk + ysR k
si jEk,

C∇Ei E j = Γk
i jEk,

C∇Ei
E j = 0, C∇Ei

E j = 0,
(3.1)

with respect to the adapted frame
{
Eβ

}
, where Γh

i j and R k
si j respectively denote components of the Levi-

Civita connection ∇ and the Riemannian curvature tensor field R of the pseudo-Riemannian metric g
on M (see [36]).
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Now, we are interested in a RQSMC ∇ on (T M,C g). We denote the components of the RQSMC ∇
by Γ. A RQSMC ∇ satisfies

∇α(Cgβγ) = 0 and Γ
γ

αβ − Γ
γ

βα − [Eα, Eβ] = T
γ

αβ, (3.2)

where T
γ

αβ are the components of the torsion tensor of ∇. When the Eq (3.2) is solved with respect to
Γ
γ

αβ, we find the following solution [2]:

Γ
γ

αβ = CΓ
γ
αβ + Uγ

αβ, (3.3)

where CΓ
γ
αβ are the components of the Levi-Civita connection of Cg,

Uαβγ =
1
2

(Tαβγ + T γαβ + T γβα) (3.4)

and
Uαβγ = Uε

αβ
Cgεγ, Tαβγ = T ε

αβ
Cgεγ.

We put

T
k

i j = y jR k
i − yiR k

j (3.5)

and all other T
γ

αβ not related to T
k

i j are assumed to be zero, where yi = ysgsi. By using (3.4) and (3.5),
we get the only non-zero component of Uγ

αβ as follows

U h
i j = y jR h

i − yhRi j

with respect to the adapted frame. From (3.3) and (3.1), we have components of the RQSMC ∇ with
respect to Cg as follows:

(i) Γ
k

i j = Γ k
i j , (v) Γ

k
i j = ysR k

si j + y jR k
i − ykRi j,

(ii) Γ
k

i j = 0, (vi) Γ
k

i j = 0,

(iii) Γ
k

i j = 0, (vii) Γ
k

i j = Γ k
i j ,

(iv) Γ
k

i j = 0, (viii) Γ
k

i j = 0,

(3.6)

which gives the following proposition.

Proposition 2. The RQSMC ∇ of (T M,C g) is given by
∇Ei E j = Γk

i jEk + {ysR k
si j + y jR k

i − ykRi j}Ek,

∇Ei E j = Γk
i jEk,

∇Ei
E j = 0, ∇Ei

E j = 0,

with respect to the adapted frame
{
Eβ

}
, where Γh

i j and R s
h ji respectively denote components of the Levi-

Civita connection ∇ and the Riemannian curvature tensor field R of the pseudo-Riemannian metric g
on M.
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Given a pseudo-Riemannian metric g on a differentiable manifold M, another well-known classical
pseudo-Riemannian metric on T M is the metric I + II defined by

g̃
(
XH,YH

)
= g (X,Y) ,

g̃
(
XH,YV

)
= g̃

(
XV ,YH

)
= g (X,Y) ,

g̃
(
XV ,YV

)
= 0,

for all vector fields X,Y on M [36]. The metric I + II has the components

g̃αβ =

(
gi j gi j

gi j 0

)
with respect to the adapted frame. Let us consider the covariant derivation of the metric I + II with
respect to the RQSMC ∇. One checks that

∇kgi j = Ekg̃i j − Γ
h
kĩgh j − Γ

h
kĩgh j − Γ

h
k j̃gih − Γ

h
k j̃gih

= (∂k − ysΓh
sk∂k)gi j − Γh

kigh j − (ysR h
ski + yiRh

k

−yhRki)gh j − Γh
k jgih − (ysR h

sk j + y jRh
k − yhRk j)gih

= ∂kgi j − Γh
kigh j − ysRski j − yiRk j + y jRki − Γh

k jgih

−ysRsk ji − y jRik + yiRk j

= ∂kgi j − Γh
kigh j − Γh

k jgih

= ∇kgi j = 0,

∇kg̃i j = Ekg̃i j − Γ
h
kigh j − Γ

h
ki g̃h j︸︷︷︸

0

− Γ
h
k j︸︷︷︸
0

g̃ih − Γ
h
k j̃gih

= ∂kgi j − Γh
kigh j − Γh

k jgih = ∇kgi j = 0,

∇kgi j = Ekgi j − Γ
h
ki︸︷︷︸

0

gh j − Γ
h
kigh j − Γ

h
k jgih − Γ

h
k j gih︸︷︷︸

0

= ∂kgi j − Γh
kigh j − Γ

h
k jgih = ∇kgi j = 0,

all others are automatically zero. Hence, we can state following result.

Proposition 3. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped
with the complete lift metric Cg or the metric I + II. The RQSMC ∇ with respect to the complete lift
metric Cg is also a RQSMC with respect to the metric I + II.

3.2. The curvature tensors

The curvature tensor R of the RQSMC ∇ of (T M,C g) is obtained from the well-known formula

R
(
X̃, Ỹ

)
Z̃ = ∇X̃∇Ỹ Z̃ − ∇Ỹ∇X̃Z̃ − ∇[X̃,Ỹ]Z̃

for all vector fields X̃, Ỹ , Z̃ on T M. From Proposition 2, we get the following.
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Proposition 4. The curvature tensor R of the RQSMC ∇ of (T M,C g) is given as follows

R(Ei, E j)Ek = R l
i jk El + {ys∇sR l

i jk }El, (3.7)

R(Ei, E j)Ek = R l
i jk El,

R(Ei, E j)Ek = {R l
i jk + Rikδ

l
j − g jkR l

i }El,

R(Ei, E j)Ek = {R l
i jk + gikR l

j − R jkδ
l
i}El,

R(Ei, E j)Ek = 0, R(Ei, E j)Ek = 0,

R(Ei, E j)Ek = 0, R(Ei, E j)Ek = 0,

with respect to the adapted frame
{
Eβ

}
.

Since the Levi-Civita connections of the complete lift metric Cg and the metric I + II coincide, their
Riemannian curvature tensors coincide [36]. The Riemannian curvature tensor R̂ of the Levi-Civita
connection of the complete lift metric Cg (or the metric I + II) is given by

R̂(Ei, E j)Ek = R l
i jk El + {ys∇sR l

i jk }El,

R̂(Ei, E j)Ek = R l
i jk El,

R̂(Ei, E j)Ek = R l
i jk El,

R̂(Ei, E j)Ek = R l
i jk El,

R̂(Ei, E j)Ek = 0, R̂(Ei, E j)Ek = 0,

R̂(Ei, E j)Ek = 0, R̂(Ei, E j)Ek = 0.

On comparing the curvature tensors of the Levi-Civita connection of the complete lift metric Cg (or
the metric I + II) and the RQSMC, we have the result below.

Corollary 1. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped
with the complete lift metric Cg. The curvature tensors of the Levi-Civita connection of the complete
lift metric Cg (or the metric I + II) and the RQSMC if and only if Rikδ

l
j − g jkR l

i = 0 .

Theorem 1. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped with
the complete lift metric Cg. The curvature (0, 4)−tensor R of the RQSMC ∇ holds the followings

i) Rαβγσ + Rβαγσ = 0,
ii) Rαβγσ + Rαβσγ = 0.

Proof. On lowering the upper index of the curvature tensor R of the RQSMC ∇, the non-zero
components of the curvature (0, 4)−tensor are obtained as follows

Ri jkh = ys∇sRi jkh, (3.8)

Ri jk h = Ri jkh,

Ri j kh = Ri jkh,

Ri j kh = Ri jkh − g jkRim + Rikg jm,

Ri j kh = Ri jkh + gikR jm − R jkgim.

i) and ii) The results immediately follows from the above relations. �
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Let Kαβ = R
σ

σαβ denote the Ricci tensor of the RQSMC ∇. Then

K jk = (3 − n)R jk, (3.9)
K jk = 0,

K j k = 0,

K j k = 0,

from which the following result follows.

Theorem 2. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped with
the complete lift metric Cg. The Ricci tensor of the RQSMC ∇ is symmetric.

Theorem 3. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped with
the complete lift metric Cg. Then T M is Ricci flat with respect to the RQSMC ∇ if and only if M is
Ricci flat.

A (pseudo-)Riemannian manifold (M, g) is called Ricci semi-symmetric if the following condition
is satisfied [33]

R(X,Y).K = 0,

where R(X,Y) is a linear operator acting as a derivation on the Ricci curvature tensor K of (M, g).
The curvature operator R(X̃, Ỹ) is a differential operator on T M for all vector fields X̃ and Ỹ . Now

we operate the curvature operator R(X̃, Ỹ) to the Ricci curvature tensor K, that is, for all Z̃, W̃, we
consider the condition (R(X̃, Ỹ)K)(Z̃, W̃) = 0. In this case, we shall call T M Ricci semi-symmetric
with respect to the Ricci quarter-symmetric metric connection ∇.

In the adapted frame
{
Eβ

}
, the tensor (R(X̃, Ỹ)K)(Z̃, W̃) is locally expressed as follows

(R(X̃, Ỹ)K)(Z̃, W̃)αβγθ = R
ε

αβγKεθ + R
ε

αβθKγε. (3.10)

Similarly, in local coordinates,

((R(X̃, Ỹ)K)(Z̃, W̃)i jkl = R
p

i jk K pl + R
p

i jl Kkp.

Theorem 4. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped with
the complete lift metric Cg. Then T M is Ricci semi-symmetric with respect to the RQSMC ∇ if and only
if M is Ricci semi-symmetric and n , 3.

Proof. By putting α = i, β = j, γ = k, θ = l in (3.10), we find

(R(X̃, Ỹ)K)(Z̃, W̃)i jkl

= R
h

i jk Khl + R
h

i jl Kkh

= R h
i jk [(3 − n)Rhl] + R h

i jl [(3 − n)Rkh]

= (3 − n)[R h
i jk Rhl + R h

i jl Rkh]
= (3 − n)[(R(X,Y)Ric)(Z,W)]i jkl,

all the others being zero. This finishes the proof. �
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For the scalar curvature r of the RQSMC ∇ with respect to Cg, we find

r = Kαβ
Cgαβ = K jk

Cg jk + K jk
Cg jk + K jk

Cg jk + K jk
Cg jk = 0.

Then we can state the following.

Theorem 5. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped
with the complete lift metric Cg. The scalar curvature of T M with the RQSMC ∇ with respect to Cg
vanishes.

As an application concerning the torsion tensor T of the RQSMC ∇, we get the following.

Theorem 6. Let ∇ be a RQSMC on T M. Then for all vector felds X,Y and Z on T M

σ
X,Y ,Z

T
(
T (X,Y)Z

)
= 0,

where σ is the cyclic sum by three arguments and T is the torsion tensor of the RQSMC ∇.

Proof. For all vector felds X,Y and Z on T M, σ
X,Y ,Z

T
(
T (X,Y)Z

)
can be written as follows

σ
X,Y ,Z

T
(
T (X,Y)Z

)
= T

ε

αβT
σ

εγ + T
ε

γαT
σ

εβ + T
ε

βγT
σ

εα

in the adapted frame {Eβ}. By using (3.5), standard calculations directly give the result. �

A (0, 2) generalized tensor Z is defined by

Z(X,Y) = Ric(X,Y) + φg(X,Y)

for all vectors X and Y on M. Analogous to this definition, a tensor Z may be locally defined on T M
as follows

Zαβ = Rαβ + φgαβ.

Here Rαβ denote the components of the Ricci tensor of the RQSMC ∇ and gαβ denote the components
of the complete lift metric Cg. Putting the values of Rαβ and gαβ in the above equation, we have the
non-zero components

Zi j = (3 − n)Ri j,
Zi j = Zi j = φgi j.

(3.11)

Hence, we have the following result.

Theorem 7. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle. The tensor
Z of the RQSMC ∇ is symmetric.

Theorem 8. Let ∇ be the Levi-Civita connection on a Riemannian manifold (M, g) and T M be the
tangent bundle. T M is Z semi-symmetric with respect to the RQSMC ∇ if and only if the Riemannian
manifold (M, g) is Ricci semi-symmetric with respect to ∇ and n , 3.

AIMS Mathematics Volume 8, Issue 8, 17335–17353.



17344

Proof. The tensor R(X,Y).Z has the components

(R(X,Y).Z)αβγσ = R
ε

αβγZεσ + R
ε

αβσZγε

with respect to the adapted frame {Eβ}. By using (3.7) and (3.11) on the above equation we find the
only non-zero component

(R(X,Y).Z)i jkm = (3 − n)(R(X,Y)Ric)i jkm.

This completes the proof. �

Next, we are interested in the mean connection of the RQSMC ∇ on (T M,C g). We denote the
components of the mean connection ∇̃ by Γ̃. From (3.5) and (3.6), by using Γ̃

γ
αβ = Γ

γ

αβ −
1
2T

γ

αβ we have
components of the mean connection with respect to RQSMC ∇ as follows:

(i) Γ
k

i j = Γ k
i j (v) Γ

k
i j = ysR k

si j − ykRi j + 1
2 (y jR k

i + yiR k
j )

(ii) Γ
k

i j = 0 (vi) Γ
k

i j = 0

(iii) Γ
k

i j = 0 (vii) Γ
k

i j = Γ k
i j

(iv) Γ
k

i j = 0 (viii) Γ
k

i j = 0.

Hence we get the following proposition.

Proposition 5. The mean connection of the RQSMC ∇ of (T M,C g) is given by
∇̃Ei E j = Γk

i jEk + {ysR k
si j − ykRi j + 1

2 (y jR k
i + yiR k

j )}Ek,

∇̃Ei E j = Γk
i jEk,

∇̃Ei
E j = 0, ∇Ei

E j = 0,

with respect to the adapted frame {Eβ}, where Γh
i j and R s

h ji respectively denote components of the Levi-
Civita connection ∇ and the Riemannian curvature tensor R of the pseudo-Riemannian metric g on
M.

From Proposition 5, we get the following.

Proposition 6. The curvature tensor R̃ of the mean connection ∇̃ of (T M,C g) is given as follows:

R̃(Ei, E j)Ek = R l
i jk El + {ys∇sR l

i jk }El,

R̃(Ei, E j)Ek = R l
i jk El,

R̃(Ei, E j)Ek = {R l
i jk + δl

jRik −
1
2

(g jkR l
i + g jiR l

k )}El,

R̃(Ei, E j)Ek = {R l
i jk − δ

l
iR jk +

1
2

(gikR l
j + gi jR l

k )}El,

R̃(Ei, E j)Ek = 0, R̃(Ei, E j)Ek = 0,

R̃(Ei, E j)Ek = 0, R̃(Ei, E j)Ek = 0,

with respect to the adapted frame
{
Eβ

}
.
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Let R̃αβ = R̃ σ
σαβ denotes the Ricci tensor of the mean connection with respect to the RQSMC ∇.

Then
R̃ jk = (3 − n)R jk,

R̃ jk = 0,
R̃ jk = 0,
R̃ jk = 0,

from which the following result follows.

Theorem 9. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped with
the complete lift metric Cg. The Ricci tensor of the mean connection and Ricci tensor of the RQSMC
coincide.

3.3. Ricci soliton structures on (T M ,Cg)

A Ricci soliton is defined by a smooth vector field V on a Riemannian manifold (M, g) such that

1
2

LVg + Ric = λg (3.12)

where LVg is the Lie derivative of the Riemannian metric g with respect to V , Ric is the Ricci tensor of
(M, g) and λ is a constant. The vector field V is called the potential vector field of the Ricci soliton.

Now, we give some conditions for a vector field Ṽ on T M , such that (Cg, Ṽ , λ) becomes a Ricci
soliton with respect to the RQSMC ∇. Let Ṽ be a fibre-preserving vector field on T M with components(
vh, vh

)
with respect to the adapted frame

{
Eβ

}
, that is, vh depend only on the variables

(
xh

)
. From (3.12),

(Cg, Ṽ , λ) is a Ricci soliton on T M if and only if the following equations are satisfied

1
2

LṼ
Cg(Xv, Xh) + K(Xv, Xh) = λCg(Xv, Xh), (3.13)

1
2

LṼ
Cg(Xh, Xv) + K(Xh, Xv) = λCg(Xh, Xv), (3.14)

1
2

LṼ
Cg(Xh, Xh) + K(Xh, Xh) = λCg(Xh, Xh), (3.15)

for any vector fields X and Y on M. Here K denotes the Ricci tensor of the RQSMC ∇. With respect
to the adapted frame

{
Eβ

}
, a vector field Ṽ on (T M,C g) is said to define a Ricci soliton if there exists a

real constant λ such that
1
2

LṼ g̃αβ + Kαβ = λg̃αβ.

Putting (α, β) = (i, j), (i, j) and (i, j), from the above equation, it can be written the following system
by using (3.9)

i)
(
Eiv

h
)

gh j +
(
∇ jvh

)
ghi = 2λgi j,

ii)
(
∇ivh

)
gh j +

(
E jv

h
)

ghi = 2λgi j,

iii)

[
Eivh +

(
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia va
]

gh j

+
[
E jvh +

(
ysR h

s ja + yaRh
j − yhR ja

)
va + Γ h

java
]

ghi

+2(3 − n)R jk

= 0.
(3.16)
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Next, we will give a series of propositions. They will use the proof of the main theorem, which will be
given at the end of this section.

Proposition 7. The scalar function λ on T M depends only on the variables
(
xh

)
with respect to the

induced coordinates
(
xh, yh

)
.

Proof. Applying Ek to the both sides of the equation (i) in (3.16), we have

gh jEkEiv
h = 2Ek (λ) gi j

from which we get
Ek (λ) gi j = Ei (λ) gk j,

it follows that
(n − 1)Ek (λ) = 0.

This shows that the scalar function λ on T M depends only on the variables
(
xh

)
with respect to the

induced coordinates
(
xh, yh

)
. Thus we can regard λ as a function on M and in the following we write ρ

instead of λ. �

From (3.16) and Proposition 7, Ei

(
vh

)
depends only the variables

(
xh

)
, thus we can put

vh = yaAh
a + Bh, (3.17)

where Ah
a and Bh are certain functions which depend only on the variable

(
xh

)
. Furthermore, we can

easily show that Ah
a and Bh are the components of a (1, 1)−tensor field and a contravariant vector field

on M, respectively.

Proposition 8. If we put

B = Bh ∂

∂xh ,

then we get LBgi j = 2(n − 3)Ri j on M .

Proof. Substituting (3.17) and (3.9) into the equation (iii) in (3.16) we have

∇iB j + ∇ jBi + 2(3 − n)Ri j = 0 (3.18)

and
va(Rsia j + Rs jai + gsaRi j − gs jRia + gsaR ji − gsiR ja) + ∇iAs j + ∇ jAsi = 0 (3.19)

where Bi = gimBm and As j = gh jAh
s . Hence by (3.18), it follows

LBgi j = 2(n − 3)Ri j.

�
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Substituting (3.17) into the equation (i) in (3.16), we have

Ei

(
vh

)
gh j +

(
∇ jvh

)
ghi = 2ρgi j

⇒ ∂i

(
ysAh

s + Bh
)

gh j +
(
∇ jvh

)
ghi = 2ρgi j

⇒ Ah
i gh j +

(
∇ jvh

)
ghi = 2ρgi j

⇒ gh jAh
i = 2ρgi j − ghi

(
∇ jvh

)
. (3.20)

Let ∇ be a linear connection on M. A vector field V on M is said to be a projective vector field if
there exists a 1-form θ such that

(LV∇)(X,Y) = θ(X)Y + θ(Y)X

for any vector fields X and Y on M. In this case θ is called the associated 1-form of V . It can locally be
expressed in the following form

LVΓh
i j = θiδ

h
j + θ jδ

h
i .

Proposition 9. The vector field V with components
(
vh

)
is a projective vector field (infinitesmal

projective transformation) on M with respect to the Levi-Civita connection ∇, if

2δh
aRi j − Riaδ

h
j − R jaδ

h
i = 0.

Proof. Applying the covariant derivative ∇k to the both sides of (3.20), we obtain

gh j∇kAh
i = ∇k

[
2ρgi j − ghi

(
∇ jvh

)]
(3.21)

= 2 (∇kρ) gi j − ghi∇k∇ jvh

= 2ρkgi j − ghi

(
LVΓ h

k j − R h
ak jv

a
)

∇kAi j = 2ρkgi j − LVΓ h
k j ghi − Raki jva.

Substituting (3.21) into (3.19), we have

va(Rsia j + Rs jai + gsaRi j − gs jRia + gsaR ji − gsiR ja) + ∇iAs j + ∇ jAsi = 0

⇒
va(Rsia j + Rs jai + gsaRi j − gs jRia + gsaR ji − gsiR ja)

+2ρigs j − LVΓ h
i j ghs − Rais jva + 2ρ jgsi − LVΓ h

ji ghs − Ra jsiva = 0

⇒ va
(
gsaRi j − gs jRia + gsaR ji − gsiR ja

)
+ 2

(
ρigs j + ρ jgsi

)
= 2LVΓ h

i j ghs

⇒ LVΓ h
i j = ρiδ

h
j + ρ jδ

h
i +

1
2

va
(
2δh

aRi j − Riaδ
h
j − R jaδ

h
i

)
.

where ρi = ∇iρ. Hence, V is a projective vector field on M with respect to the Levi-Civita connection
∇. �

Theorem 10. Let Ṽ = vhEh + vhEh be a vector field on (T M,C g) with respect to the adapted frame{
Eβ

}
. Then (Cg, Ṽ , λ) is a Ricci soliton on T M if and only if the following conditions are satisfied:

i) λ on T M depends only the variables (xh).
ii) The vector field V with the components (vh) is an infinitesimal projective transformation on M.
iii) vh = yaAh

a + Bh.

iv) Ai j = 2pgi j − ∇ jvi. v) LBgi j = 2(n − 3)Ri j.
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Proof. The Propositions 7–9 and the facts that have already been shown complete the proof of
Theorem. �

3.4. Gradient Ricci soliton structures on (T M,C g)

A Ricci soliton (g,V, λ) is called a gradient Ricci soliton if V = ∇ f . Here the smooth function f is
called the potential function and the Eq (3.12) assumes the form:

Hess f + Ric = λg, (3.22)

where ∇ f is the gradient of f and Hess denotes the Hessian. We denote as usually the Hessian (with
respect to the connection ∇) of any function f on M, by

(Hess∇ f )(X,Y) = XY f − (∇XY) f ,

for any vector fields X and Y on M.

Lemma 1. Let f be a smooth function on a Riemannian manifold (M, g). Then, the Hessian of its
vertical lift is expressed by with respect to the RQSMC ∇ on (T M,C g):

Hess
∇

V f (HX,H Y) = HX HY V f − (∇H X
HY)V f .

Hess
∇

V f (Ei, E j) = Ei E j
V f − (∇Ei E j)V f

= (∂i − ysΓh
si∂h)(∂ j − ymΓl

m j∂l) f

−[Γh
i jEh + (ysR h

si j + y jRh
i − yhRi j)Eh]V f

= (∂i − ysΓh
si∂h)(∂ j f ) − Γh

i j(∂h − ysΓm
sh∂m) f

= ∂i∂ j f − Γh
i j∂h f

= ∇i∇ j f . (3.23)

Hess
∇

V f (V X,V Y) = V X VY V f − (∇V X
VY)V f .

Hess
∇

V f (Ei, E j) = Ei E j
V f − (∇Ei

E j)
V f

= 0. (3.24)
Hess

∇

V f (HX,V Y) = HX VY V f − (∇H X
VY)V f .

Hess
∇

V f (Ei, E j) = Ei E j
V f − (∇Ei E j)

V f

= −(Γh
i j

Eh + Γh
i j

Eh)V f

= 0. (3.25)
Hess

∇

V f (V X,H Y) = V X HY V f − (∇V X
HY)V f .

Hess
∇

V f (Ei, E j) = Ei E j
V f − (∇Ei

E j)V f

= ∂i(∂ j − ysΓh
s j∂h)V f

= ∂i∂ j f

= 0. (3.26)

Now, we focus the gradient Ricci soliton.
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Theorem 11. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped
with the complete lift metric Cg. For any smooth function f on M, the triple (Cg,H V,V f ) is a gradient
Ricci soliton on T M with respect to the RQSMC ∇ if and only if the Ricci tensor is equal to its Hessian
metric obtained by means of the Levi-Civita connection and n , 3.

Proof. Taking into accounts (3.23)–(3.26) and (3.9) in the Eq (3.22), it can be writen

∇i∇ j f = (n − 3)Ri j.

This completes the proof. �

3.5. Locally conformally flatness

In this section, we investigate the local conformal flatness property of (T M,C g) with respect to the
RQSMC ∇.

Theorem 12. Let (M, g) be a pseudo-Riemannian manifold and T M be its tangent bundle equipped
with the complete lift metric Cg. Then T M is locally conformally flat with respect to the Ricci quarter-
symmetric metric connection ∇ if and only if M is locally flat.

Proof. Here, we prove the only necessary conditions of the theorem because the sufficient condition
directly follows. Let ∇ be the RQSMC on the tangent bundle (T M,C g). The tangent bundle (T M,C g)
is locally conformally flat with respect to the RQSMC ∇ if and only if the components of the curvature
(0, 4)−tensor R of T M satisfy the following relation:

Rαγβµ = −
r

2(2n − 1)(n − 1)

{
CgαβCgγµ −C gαµCgγβ

}
+

1
2(n − 1)

(
CgγµKαβ −

C gαµKγβ +C gαβKγµ −
C gγβKαµ

)
.

From (3.9) we find

Ri jkh =
3 − n

2(n − 1)

(
g jhRik − g jkRih

)
. (3.27)

Ri jkh =
3 − n

2(n − 1)

(
gikR jh − gihR jk

)
. (3.28)

Ri jkh =
3 − n

2(n − 1)

(
gikR jh − g jkRih

)
. (3.29)

Ri jkh =
3 − n

2(n − 1)

(
g jhRik − gihR jk

)
. (3.30)

On the other hand, by using Rαγβσ = gσεR
ε

αγβ we find

Ri jkh = Ri jkh − g jkRih + g jhRik. (3.31)

Ri jkh = Ri jkh + gikR jh − gihR jk. (3.32)

Ri jkh = Ri jkh (3.33)

Ri jkh = Ri jkh. (3.34)
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In this case, by means of (3.27) and (3.31), we get

5 − 3n
2(n − 1)

(
g jhRik − g jkRih

)
= Ri jkh.

Similarly by means of (3.28) and (3.32), we get

5 − 3n
2(n − 1)

(
gikR jh − ghiR jk

)
= Ri jkh (3.35)

and by means of (3.29) and (3.33), we get

3 − n
2(n − 1)

(
gikR jh − g jkRih

)
= Ri jkh

and by means of (3.30) and (3.34), we get

3 − n
2(n − 1)

(
g jhRik − gihR jk

)
= Ri jkh.

Changing (3.35) by gih, we obtain

(
3n − 7

2
)R jk = 0. (3.36)

Thus, by (3.36), we obtain R jk = 0, then it follows from (3.35) Ri jkh = 0. This completes the proof. �

4. Conclusions

In this paper, we consider a tangent bundle over a Riemannian manifold (M, g) admitting a Ricci
quarter-symmetric metric connection with torsion tensor T (X,Y) = φ(Y)LX − φ(X)LY, where φ is a
non-zero 1−form, L is the (1, 1) Ricci tensor defined by g(LX,Y) = R(X,Y) and R is the Ricci tensor of
(M, g). We obtain the form of the Ricci quarter-symmetric metric connection by using the Levi-Civita
connection of the complete lift metric Cg. We show that the Ricci quarter-symmetric metric connection
with respect to the complete lift metric Cg is also a Ricci quarter-symmetric metric connection with
respect to the metric I + II which is another well-known classical pseudo-Riemannian metric on the
tangent bundle. We compute the all forms of the curvature tensor of this connection and present its
curvature properties. Also, we give the conditions for the tangent bundle to be semi-symmetric and
Z semi-symmetric with respect to the Ricci quarter-symmetric metric connection. Ricci flow was
introduced by Hamilton in 1982. It turned out to be a very powerful tool in Riemannian geometry
and is now intensively studied. Important objects of this study are solitons. Ricci solitons generate
self-similar solutions to the Ricci flow; in fact, a great deal of their relevance lies in their occurrence
as models for the asymptotic profile of singularities developed under the Ricci flow. We present the
necessary and sufficient conditions for the tangent bundle to become a Ricci soliton and a gradient Ricci
soliton with respect to the Ricci quarter-symmetric metric connection. Finally, we close this paper
with the locally conformally flatness property of the tangent bundle with respect to this connection.
Furthermore, the research on singularity theory and submanifold theory, etc. as evidenced by recent
papers [3–32], provides a promising foundation for advancing the field with the results and theorems.
Future research can build upon the ideas presented in these papers [3–32] to push the boundaries of
our understanding even further.
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