Research article

Selection of artificial neutral networks based on cubic intuitionistic fuzzy Aczel-Alsina aggregation operators

  • Received: 07 August 2024 Revised: 07 September 2024 Accepted: 14 September 2024 Published: 26 September 2024
  • MSC : 03B52, 03E72, 03E73, 28E10, 94D05

  • Artificial neural networks (ANNs) are the collection of computational techniques or models encouraged by the shape and purpose of natural or organic neural networks. Furthermore, a cubic intuitionistic fuzzy (CIF) set is the modified or extended form of a Fuzzy set (FS). Our goal was to address or compute the model of Aczel-Alsina operational laws under the consideration of the CIF set as well as Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-conorm (AATCN), where the model of Algebraic norms and Drastic norms were the special parts of the Aczel-Alsina norms. Further, using the above invented operational laws, we aimed to develop the model of Aczel-Alsina average/geometric aggregation operators, called CIF Aczel-Alsina weighted averaging (CIFAAWA), CIF Aczel-Alsina ordered weighted averaging (CIFAAOWA), CIF Aczel-Alsina hybrid averaging (CIFAAHA), CIF Aczel-Alsina weighted geometric (CIFAAWG), CIF Aczel-Alsina ordered weighted geometric (CIFAAOWG), and CIF Aczel-Alsina hybrid geometric (CIFAAHG) operators with some well-known and desirable properties. Moreover, a procedure decision-making technique was presented for finding the best type of artificial neural networks with the help of multi-attribute decision-making (MADM) problems based on CIF aggregation information. Finally, we determined a numerical example for showing the rationality and advantages of the developed method by comparing their ranking values with the ranking values of many prevailing tools.

    Citation: Chunxiao Lu, Zeeshan Ali, Peide Liu. Selection of artificial neutral networks based on cubic intuitionistic fuzzy Aczel-Alsina aggregation operators[J]. AIMS Mathematics, 2024, 9(10): 27797-27833. doi: 10.3934/math.20241350

    Related Papers:

  • Artificial neural networks (ANNs) are the collection of computational techniques or models encouraged by the shape and purpose of natural or organic neural networks. Furthermore, a cubic intuitionistic fuzzy (CIF) set is the modified or extended form of a Fuzzy set (FS). Our goal was to address or compute the model of Aczel-Alsina operational laws under the consideration of the CIF set as well as Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-conorm (AATCN), where the model of Algebraic norms and Drastic norms were the special parts of the Aczel-Alsina norms. Further, using the above invented operational laws, we aimed to develop the model of Aczel-Alsina average/geometric aggregation operators, called CIF Aczel-Alsina weighted averaging (CIFAAWA), CIF Aczel-Alsina ordered weighted averaging (CIFAAOWA), CIF Aczel-Alsina hybrid averaging (CIFAAHA), CIF Aczel-Alsina weighted geometric (CIFAAWG), CIF Aczel-Alsina ordered weighted geometric (CIFAAOWG), and CIF Aczel-Alsina hybrid geometric (CIFAAHG) operators with some well-known and desirable properties. Moreover, a procedure decision-making technique was presented for finding the best type of artificial neural networks with the help of multi-attribute decision-making (MADM) problems based on CIF aggregation information. Finally, we determined a numerical example for showing the rationality and advantages of the developed method by comparing their ranking values with the ranking values of many prevailing tools.



    加载中


    [1] G. A. Klein, Strategies of decision making, Mil. Rev., 69 (1989), 56–64.
    [2] C. R. Schwenk, Strategic decision making, J. Manag., 21 (1995), 471–493. https://doi.org/10.1016/0149-2063(95)90016-0 doi: 10.1016/0149-2063(95)90016-0
    [3] D. H. Jonassen, designing for decision making, Education Tech. Res. Dev., 60 (2012), 341–359. https://doi.org/10.1007/s11423-011-9230-5 doi: 10.1007/s11423-011-9230-5
    [4] J. Peterson, Decision‐making in the European Union: Towards a framework for analysis, J. Eur. Public Policy, 2 (1995), 69–93. https://doi.org/10.1080/13501769508406975 doi: 10.1080/13501769508406975
    [5] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [6] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1007/978-3-7908-1870-3_1 doi: 10.1007/978-3-7908-1870-3_1
    [7] K. T. Atanassov, Interval valued intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets: Theory and applications, Heidelberg: Physica, 1999. https://doi.org/10.1007/978-3-7908-1870-3_2
    [8] Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inf., 4 (2012), 83–98.
    [9] L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern., SMC-3 (1973), 28–44. https://doi.org/10.1109/TSMC.1973.5408575
    [10] I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets Syst., 20 (1986), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1 doi: 10.1016/0165-0114(86)90077-1
    [11] G. Kaur, H. Garg, Multi-attribute decision-making based on Bonferroni mean operators under cubic intuitionistic fuzzy set environment, Entropy, 20 (2018), 65. https://doi.org/10.3390/e20010065 doi: 10.3390/e20010065
    [12] A. Mardani, M. Nilashi, E. K. Zavadskas, S. R. Awang, H. Zare, N. M. Jamal, Decision making methods based on fuzzy aggregation operators: Three decades review from 1986 to 2017, Int. J. Inf. Tech. Decis. Making, 17 (2018), 391–466. https://doi.org/10.1142/S021962201830001X doi: 10.1142/S021962201830001X
    [13] J. M. Merigó, M. Casanovas, Fuzzy Generalized Hybrid Aggregation Operators and its Application in Fuzzy Decision Making, Int. J. Fuzzy Syst., 12 (2010), 11–22. https://doi.org/10.1142/S021962201830001 doi: 10.1142/S021962201830001
    [14] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [15] X. Yu, Z. Xu, Prioritized intuitionistic fuzzy aggregation operators, Inf. Fusion, 14 (2013), 108–116. https://doi.org/10.1016/j.inffus.2012.01.011 doi: 10.1016/j.inffus.2012.01.011
    [16] Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. General Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
    [17] H. Garg, Z. Ali, T. Mahmood, M. R. Ali, A. Alburaikan, Schweizer-Sklar prioritized aggregation operators for intuitionistic fuzzy information and their application in multi-attribute decision-making, Alex. Eng. J., 67 (2023), 229–240. https://doi.org/10.1016/j.aej.2022.12.049 doi: 10.1016/j.aej.2022.12.049
    [18] W. Wang, X. Liu, Y. Qin, Interval-valued intuitionistic fuzzy aggregation operators, J. Syst. Eng. Electron., 23 (2012), 574–580. https://doi.org/10.1109/JSEE.2012.00071 doi: 10.1109/JSEE.2012.00071
    [19] T. Senapati, R. Mesiar, V. Simic, A. Iampan, R. Chinram, R. Ali, Analysis of interval-valued intuitionistic fuzzy aczel–alsina geometric aggregation operators and their application to multiple attribute decision-making, Axioms, 11 (2022), 258. https://doi.org/10.3390/axioms11060258 doi: 10.3390/axioms11060258
    [20] X. Shi, Z. Ali, T. Mahmood, P. Liu, Power Aggregation Operators of Interval-Valued Atanassov-Intuitionistic Fuzzy Sets Based on Aczel–Alsina t-Norm and t-Conorm and Their Applications in Decision Making, Int. J. Comput. Intell. Syst., 16 (2023), 43. https://doi.org/10.1007/s44196-023-00208-7 doi: 10.1007/s44196-023-00208-7
    [21] G. Wei, X. Wang, Some geometric aggregation operators based on interval-valued intuitionistic fuzzy sets and their application to group decision making, 2007 International Conference on Computational Intelligence and Security (CIS 2007), 2007,495–499. https://doi.org/10.1109/CIS.2007.84
    [22] Z. Xu, J. Chen, On geometric aggregation over interval-valued intuitionistic fuzzy information. Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), 2007,466–471. https://doi.org/10.1109/FSKD.2007.427
    [23] A. Fahmi, F. Amin, S. Abdullah, A. Ali, Cubic fuzzy Einstein aggregation operators and its application to decision-making, Int. J. Syst. Sci., 49 (2018), 2385–2397. https://doi.org/10.1080/00207721.2018.1503356 doi: 10.1080/00207721.2018.1503356
    [24] A. Khan, A. U. Jan, F. Amin, A. Zeb, Multiple attribute decision-making based on cubical fuzzy aggregation operators, Granul. Comput., 7 (2022), 393–410. https://doi.org/10.1007/s41066-021-00273-3 doi: 10.1007/s41066-021-00273-3
    [25] G. Kaur, H. Garg, Cubic intuitionistic fuzzy aggregation operators, Int. J. Uncertainty Quantif., 8 (2018), 405–427. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020471 doi: 10.1615/Int.J.UncertaintyQuantification.2018020471
    [26] G. Kaur, H. Garg, Generalized cubic intuitionistic fuzzy aggregation operators using t-norm operations and their applications to group decision-making process, Arabian J. Sci. Eng., 44 (2019), 2775–2794. https://doi.org/10.1007/s13369-018-3532-4 doi: 10.1007/s13369-018-3532-4
    [27] E. P. Klement, P. Mesiar, Triangular norms, Tatra Mt. Math. Publ., 13 (1997), 169–193.
    [28] J. Aczél, C. Alsina, Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements, Aeq. Math., 25 (1992), 313–315. https://doi.org/10.1007/BF02189626 doi: 10.1007/BF02189626
    [29] T. Senapati, G. Chen, R. R. Yager, Aczel–Alsina aggregation operators and their application to intuitionistic fuzzy multiple attribute decision making, Int. J. Intell. Syst., 37 (2022), 1529–1551. https://doi.org/10.1002/int.22684 doi: 10.1002/int.22684
    [30] T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Novel Aczel–Alsina operations‐based interval‐valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision‐making process, Int. J. Intell. Syst., 37 (2022), 5059–5081. https://doi.org/10.1002/int.22751 doi: 10.1002/int.22751
    [31] T. Senapati, G. Chen, R. Mesiar, R. R. Yager, A. Saha, Novel Aczel–Alsina operations-based hesitant fuzzy aggregation operators and their applications in cyclone disaster assessment, Int. J. Gen. Syst., 51 (2022), 511–546. https://doi.org/10.1080/03081079.2022.2036140 doi: 10.1080/03081079.2022.2036140
    [32] T. Mahmood, Z. Ali, S. Baupradist, R. Chinram, Complex intuitionistic fuzzy Aczel-Alsina aggregation operators and their application in multi-attribute decision-making, Symmetry, 14 (2022), 2255. https://doi.org/10.3390/sym14112255 doi: 10.3390/sym14112255
    [33] T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Intuitionistic fuzzy geometric aggregation operators in the framework of Aczel-Alsina triangular norms and their application to multiple attribute decision making, Expert. Syst. Appl., 212 (2023), 118832. https://doi.org/10.1016/j.eswa.2022.118832 doi: 10.1016/j.eswa.2022.118832
    [34] J. Ahmmad, T. Mahmood, N. Mehmood, K. Urawong, R. Chinram, Intuitionistic Fuzzy Rough Aczel-Alsina Average Aggregation Operators and Their Applications in Medical Diagnoses, Symmetry, 14 (2022), 2537. https://doi.org/10.3390/sym14122537 doi: 10.3390/sym14122537
    [35] M. Sarfraz, K. Ullah, M. Akram, D. Pamucar, D. Božanić, Prioritized aggregation operators for intuitionistic fuzzy information based on Aczel–Alsina T-norm and T-conorm and their applications in group decision-making, Symmetry, 14 (2022), 2655. https://doi.org/10.3390/sym14122655 doi: 10.3390/sym14122655
    [36] T. Mahmood, Z. Ali, Multi-attribute decision-making methods based on Aczel–Alsina power aggregation operators for managing complex intuitionistic fuzzy sets, Comp. Appl. Math., 42 (2023), 87. https://doi.org/10.1007/s40314-023-02204-1 doi: 10.1007/s40314-023-02204-1
    [37] A. Hussain, H. Wang, H. Garg, K. Ullah, An Approach to Multi-attribute Decision Making Based on Intuitionistic Fuzzy Rough Aczel-Alsina Aggregation Operators, J. King Saud Univ.-Sci., 35 (2023), 102760. https://doi.org/10.1016/j.jksus.2023.102760 doi: 10.1016/j.jksus.2023.102760
    [38] M. R. Seikh, U. Mandal, Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making, Granul. Comput., 6 (2021), 473–488. https://doi.org/10.1007/s41066-019-00209-y doi: 10.1007/s41066-019-00209-y
    [39] M. R. Seikh, U. Mandal, q-Rung orthopair fuzzy Archimedean aggregation operators: application in the site selection for software operating units, Symmetry, 15 (2023), 1680. https://doi.org/10.3390/sym15091680 doi: 10.3390/sym15091680
    [40] M. R. Seikh, U. Mandal, Q-rung orthopair fuzzy Frank aggregation operators and its application in multiple attribute decision-making with unknown attribute weights, Granul. Comput., 7 (2022), 709–730. https://doi.org/10.1007/s41066-021-00290-2 doi: 10.1007/s41066-021-00290-2
    [41] M. R. Seikh, U. Mandal, Multiple attribute group decision making based on quasirung orthopair fuzzy sets: Application to electric vehicle charging station site selection problem, Eng. Appl. Artif. Intell, 115 (2022), 105299. https://doi.org/10.1016/j.engappai.2022.105299 doi: 10.1016/j.engappai.2022.105299
    [42] M. R. Seikh, U. Mandal, Multiple attribute decision-making based on 3, 4-quasirung fuzzy sets, Granul. Comput., 7 (2022), 965–978. https://doi.org/10.1007/s41066-021-00308-9 doi: 10.1007/s41066-021-00308-9
    [43] H. M. A. Farid, S. Dabic-Miletic, M. Riaz, V. Simic, D. Pamucar, Prioritization of sustainable approaches for smart waste management of automotive fuel cells of road freight vehicles using the q-rung orthopair fuzzy CRITIC-EDAS method, Inf. Sci., 661 (2024), 120162. https://doi.org/10.1016/j.ins.2024.120162 doi: 10.1016/j.ins.2024.120162
    [44] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2022), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [45] M. Riaz, R. Kausar, T. Jameel, D. Pamucar, Cubic picture fuzzy topological data analysis with integrating blockchain and the metaverse for uncertain supply chain management, Eng. Appl. Artif. Intell., 131 (2024), 107827. https://doi.org/10.1016/j.engappai.2023.107827 doi: 10.1016/j.engappai.2023.107827
    [46] A. Razzaq, M. Riaz, Picture fuzzy soft-max Einstein interactive weighted aggregation operators with applications, Comput. Appl. Math., 43 (2024), 90–104. https://doi.org/10.1007/s40314-024-02609-6 doi: 10.1007/s40314-024-02609-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(366) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog