This paper introduces a new class of multivariable operators called (n1,⋯,nm)-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators Q=(Q1,⋯,Qm) is said to be an (n1,⋯,nm)-hyponormal tuple for some (n1,⋯,nm)∈Nm if
∑1≤k,l≤m⟨[Q∗nkk,Qnll]ωk∣ωl⟩≥0,∀(ωk)1≤k≤m∈Km.
We show several properties of this class that correspond to the properties of joint hyponormal operators.
Citation: Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud. On (n1,⋯,nm)-hyponormal tuples of Hilbert space operators[J]. AIMS Mathematics, 2024, 9(10): 27784-27796. doi: 10.3934/math.20241349
[1] | Salma Aljawi, Kais Feki, Hranislav Stanković . Jointly A-hyponormal m-tuple of commuting operators and related results. AIMS Mathematics, 2024, 9(11): 30348-30363. doi: 10.3934/math.20241464 |
[2] | Hadi Obaid Alshammari . Higher order hyperexpansivity and higher order hypercontractivity. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393 |
[3] | Houcine Sadraoui, Borhen Halouani . Commuting Toeplitz operators on weighted harmonic Bergman spaces and hyponormality on the Bergman space of the punctured unit disk. AIMS Mathematics, 2024, 9(8): 20043-20057. doi: 10.3934/math.2024977 |
[4] | Ohud Bulayhan Almutairi, Sid Ahmed Ould Ahmed Mahmoud . New extension of quasi-M-hypnormal operators. AIMS Mathematics, 2024, 9(8): 21383-21396. doi: 10.3934/math.20241038 |
[5] | Zhi-jie Jiang . Self-adjoint and hyponormal weighted composition operators on the Fock space. AIMS Mathematics, 2024, 9(9): 24989-24997. doi: 10.3934/math.20241218 |
[6] | Gang Wang . Some properties of weaving K-frames in n-Hilbert space. AIMS Mathematics, 2024, 9(9): 25438-25456. doi: 10.3934/math.20241242 |
[7] | Khalil Hadi Hakami, Junaid Nisar, Kholood Alnefaie, Moin A. Ansari . Characterizing N-type derivations on standard operator algebras by local actions. AIMS Mathematics, 2024, 9(9): 25319-25332. doi: 10.3934/math.20241236 |
[8] | Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on p-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121 |
[9] | Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599 |
[10] | Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . n-quasi-A-(m,q)-isometry on a Banach space. AIMS Mathematics, 2023, 8(12): 28308-28321. doi: 10.3934/math.20231448 |
This paper introduces a new class of multivariable operators called (n1,⋯,nm)-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators Q=(Q1,⋯,Qm) is said to be an (n1,⋯,nm)-hyponormal tuple for some (n1,⋯,nm)∈Nm if
∑1≤k,l≤m⟨[Q∗nkk,Qnll]ωk∣ωl⟩≥0,∀(ωk)1≤k≤m∈Km.
We show several properties of this class that correspond to the properties of joint hyponormal operators.
Throughout this work, we will denote by B(K) the algebra of bounded linear operators acting on a complex Hilbert space K. For Q∈B(K), we denote by ker(Q) and Q∗ for the null space and the operator adjoint of Q, respectively. An operator Q∈B(K) is said to be normal if Q∗Q=QQ∗ [10,18,20], hyponormal if [Q∗,Q]:=Q∗Q−QQ∗≥0(‖Qω‖≥‖Q∗ω‖∀ω∈K) [7,22]). Note that
[Q∗,Q]≥0⟺⟨[Q∗,Q]ω∣ω⟩≥0∀ω∈K. |
The authors in [14] have introduced the concept of n-hyponormality for some positive integer n as follows: an operator Q is said to be n-hyponormal if [Q∗n,Qn]≥0, or equivalently (‖Qnω‖≥‖Q∗nω‖∀ω∈K). Note that
[Q∗n,Qn]≥0⟺⟨[Q∗n,Qn]ω∣ω⟩≥0∀ω∈K. |
We invite the reader to reading [14,15,24] for more details on this topic.
In recent years, the study of some concepts of operators theory in several variables has been studied at several levels by many authors, based on studies carried out on the theory of operators in one variable (see [1,2,3,8,9]). We mention here the following concepts related to our study, namely, joint normality, joint hyponormality and joint quasihyponormality. A tuple Q=(Q1,⋯,Qm)∈B(K)m, is said to be joint normal [4,5,6] if Q satisfies the following conditions:
{QlQk=QkQl∀(l,k)∈{1,⋯,m}2,[Q∗k,Qk]=0k∈{1,⋯,m}. |
However, Q=(Q1,⋯,Qm) is said to be a joint hyponormal ([4]) if
∑1≤l,k≤m⟨[Q∗k,Ql]ωk|ωl⟩≥0,∀(ωk)1≤k≤m∈Km. |
Note that Q∗:=(Q∗1,⋯,Q∗m).
Recently, Sid Ahmed et al.[17] have introduced the concept of joint m-quasihyponormal as follows: An tuple Q=(Q1,⋯,Qm)∈B(K)m is said to be a joint m-quasihyponormal if Q satisfies
∑1≤l,k≤m⟨Q∗k[Q∗k,Ql]Qlωk|ωl⟩≥0,∀(ωk)1≤k≤m∈Km. |
In this work, we present natural generalizations of joint hyponormalty to (n1,⋯,nm)-hyponrmality and joint quasihyponormality to (q1,⋯,qm)-quasi-(n1,⋯,nm)-hyponrmality. Q=(Q1,⋯,Qm) is said to be an (n1,⋯,nm)-hyponormal if
∑1≤l,k≤m⟨[Q∗nkk,Qnll]ωk|ωl⟩⟩≥0,∀(ωk)1≤k≤m∈Km, |
for some (n1,⋯,nm)∈Nm, and it is said to be (q1,⋯,qm) quasi-(n1,⋯,nm)-hyponrmal if
∑1≤l,k≤m⟨Q∗qkk[Q∗nkk,Qnll]Qqllωk|ωl⟩≥0,∀(ωk)1≤k≤m∈Km |
for some (n1,⋯,nm)∈Nm and (q1,⋯,qm)∈Nm.
Additional references regarding tuples of operators are cited here [12,16,19,21,23].
In this section, the definition and properties corresponding to the (n1,⋯,nm)-hyponormal tuples of operators are introduced.
Definition 2.1. Let Q=(Q1,⋯,Qm)∈B(K)m. We say that Q is an n=(n1,⋯,nm)-hyponormal tuple if the operator matrix ([Q∗nkk,Qnll])1≤k,l≤m=(Q∗nkkQnll−QnllQ∗nkk)1≤k,l≤m is positive on ⨁1≤k≤mK that is
∑1≤k,l≤m⟨[Q∗nkk,Qnll]ωk|ωl⟩≥0,for(ωk)1≤k≤m∈Km. | (2.1) |
It is clear from this definition that Q is an n-hyponormal tuple if
[Q∗n,Qn]=([Q∗n11,Qn11][Q∗n22,Qn11]...[Q∗nmm,Qn11][Q∗n11,Qn22][Q∗n22,Qn22]...[Q∗nmm,Qn22]............[Q∗n11,Qnmm][Q∗n22,Qnmm]...[Q∗nmm,Qnmm]) |
is positive operator on ⊕1≤i≤mK:=K⊕⋯⊕K.
Remark 2.1. The following observations can be derived from Definition 2.1.
(ⅰ) When m=1, then Q is an n-hyponormal if and only if [Q∗n,Qn]≥0. Note that
[Q∗n,Qn]≥0⟺⟨[Q∗n,Qn]ω∣ω⟩≥0⟺‖Qnω‖≥‖Q∗nω‖∀ω∈K. |
(ⅱ) If m=2, then Q=(Q1,Q2) is n=(n1,n2)-hyponormal pair if and only if
[Q∗n,Qn]=([Q∗n11,Qn11][Q∗n11,Qn22][Q∗n22,Qn11][Q∗n22,Qn22])≥0, |
which can be expressed as:
⟨[Q∗n11,(Qn11]ω1∣ω1⟩+⟨[Q∗n11,(Qn22]ω1∣ω2⟩+⟨[Q∗n22,Qn11]ω2∣ω1⟩+⟨[Q∗n22,Qn22]ω2∣ω2⟩≥0 |
for all (ω1,ω2)∈K2.
Example 2.1. Let Q=(Q1,⋯,Qm) such that each Qk be nk-hyponomal for k=1,⋯,m. If [Q∗l,Qk]=0 for k≠l. Then, Q=(Q1,⋯,Qm) is an n=(n1,⋯,nm)-hyponormal tuple.
Taking into consideration [Q∗l,Qk]=0 for k≠l and Qk is an nk-hyponprmal, we may rewrite
∑1≤k,l≤m⟨[Q∗nkk,Qnll]ωk|ωl⟩=∑1≤k≤m⟨[Q∗nkk,Qnkk]ωk|ωk⟩≥0,for(ωk)1≤k≤m∈Km. |
The following theorem introduces a characterization for the studied class of multivariable operators.
Theorem 2.1. A tuple Q=(Q1,⋯,Qm)∈B(K)m is an (n1,⋯,nm)-hyponormal tuple if and only if
∑1≤k,l≤m⟨Qnkkωl|Qnllωk⟩−‖∑1≤k≤mQ∗nkkωk‖2≥0 | (2.2) |
for every ω1,⋯,ωm∈K.
Proof. We observe that
∑1≤k,l≤m⟨[Q∗nll,Qnkk]ωl|ωk⟩≥0,∀ω1,⋯,ωm∈K. |
And so it is
∑1≤k,l≤m⟨(Q∗nllQnkk−QnkkQ∗nll)ωl∣ωk⟩≥0⇔∑1≤k,l≤m⟨Q∗nllQnkkωl|ωk⟩−∑1≤k,l≤m⟨QnkkQ∗nllωl|ωl⟩≥0⇔∑1≤k,l≤m⟨Qnkkωl∣Qnllωk⟩−∑1≤k,l≤m⟨Q∗nllωl∣Q∗nkkωk⟩≥0⟺∑1≤k,l≤m⟨Qnkkωl∣Qnllωk⟩−⟨∑1≤l≤mQ∗nllωl∣∑1≤k≤mQ∗nkkωk⟩≥0⟺∑1≤k,l≤m⟨Qnkkωl∣Qnllωk⟩−‖∑1≤l≤mQ∗nllωl‖2≥0. |
Thus, the desired equivalence is obtained.
Remark 2.2. When you choose n=(1,⋯,1), Theorem 2.1 coincides with [4, Remark 1].
Corollary 2.1. Let Q=(Q1,⋯,Qm)∈B(K)m be an (n1,⋯,nm)-hyponormal tuple of operators. Then,
⋂1≤k≤mker(Qnkk)⊆ker(∑1≤k≤mQ∗nkk). |
Proof. Let ω∈⋂1≤k≤mker(Qnkk) and taking into account Theorem 2.1, we obtain
∑1≤k,l≤m⟨Qnkkω∣Qnllω⟩⏟=0−‖∑1≤k≤mQ∗nkkω‖2≥0. |
Hence,
‖∑1≤k≤mQ∗nkkω‖=0. |
Consequently,
∑1≤k≤mQ∗nkkω=0,and soω∈ker(∑1≤k≤mQ∗nkk). |
Remark 2.3. When m=1, it is well known that if Q is an n-hyponormal single operator, then
ker(Qn)⊂ker(Q∗n). |
Proposition 2.1. Let Q∈B(K) and consider ˜Q=(Q,⋯,Q). Then, ˜Q is an (n,⋯,n)-hyponormal tuple if and only if Q is an n-hyponormal.
Proof. We have
Qisn-hyopnromal⟺‖Qnω‖−‖Q∗nω‖≥0,∀ω∈K⟺‖Qn(ω1+⋯+ωm)‖2−‖Q∗n(ω1+⋯+ωm)‖2≥0 for each collectionω1,⋯,ωm∈k,⟺⟨Q(∑1≤l≤mωl)∣Q(∑1≤k≤mωk)⟩−‖∑1≤k≤mQ∗nωk‖2≥0⟺∑1≤k,l≤m⟨Qnωl∣Qnωk⟩−‖∑1≤k≤mQ∗nωk‖2≥0⟺˜Qis(n,⋯,n)−hyponormal tuple(by Theorem2.1). |
Lemma 2.1. Let Q=(Q1,⋯,Qm)∈B(K)m, and let μ:=(μ1,⋯,μm)∈Cm. If Q is an (n1,⋯,nm)-hyponormal tuple. Then, μQ:=(μ1Q1,⋯,μmQm) is an (n1,⋯,nm)-hyponormal tuple.
Proof. Using some calculations and taking into account that U is an (n1,⋯,nm)-hyponormal tuple, we have
∑1≤k,l≤m⟨(μkQk)nkωl∣μlQl)nlωk⟩−‖∑1≤l≤m(μlQl)∗nlωl‖2=∑1≤k,l≤m⟨¯μnllQnkkωl∣¯μknkQnllωk⟩−‖∑1≤l≤mQ∗nll¯μlnlωl‖2=∑1≤k,l≤m⟨Qnkk(¯μnllωl)|Qnll(¯μnkkωk)⟩−‖∑1≤l≤mQ∗nll¯μlnlωl‖2=∑1≤k,l≤m⟨Qnkkψl∣Qnllψk⟩−‖∑1≤l≤mQ∗nllψl‖2≥0. |
Remark 2.4. The property of being (n1,⋯,nm)-hyponormal for a tuple Q=(Q1,⋯,Qm) of operators is indeed invariant under permutations of the operators in Q.
The following proposition describes some properties of n-hyponormal m -tuples of operators.
Proposition 2.2. Let Q=(Q1,⋯,Qm)∈B(K)m be an (n1,⋯,nm)-hyponormal tuple. The following properties hold:
1) If N∈B(H) is a normal operator such that N commutes with each Qk, then, NQ:=(NQK,⋯,NQm) is (n1,⋯,nm)-hyponormal tuple.
2) For any unitary operator W∈B(K), the tuples WQW∗:=(WQ1W∗,⋯,WQmW∗) is (n1,⋯,nm)-hyponormal tuple.
Proof. 1) Given that N is a normal operator for which NQk=QkN for k=1,⋯,m, and referring to Fuglede-Putnam theorem [11], we obtain N∗Qk=QkN∗. Based on these statements, we can obtain the relationships
∑1≤k,l≤m⟨(NQk)nkωl|(NQl)nlωk⟩−‖∑1≤k≤m(NQk)∗nkωk‖2=∑1≤k,l≤m⟨N∗nlQnkkωl∣N∗nkQnllωk⟩−‖∑1≤k≤mN∗nkQ∗nkkωk‖2=∑1≤k,l≤m⟨Qnkk(N∗nlωl)∣Qnll(N∗nlωk)⟩−‖∑1≤k≤mQ∗nkkN∗nkωk‖2=∑1≤k,l≤m⟨Qnkkω′l∣Qnllω′k⟩−‖∑1≤k≤mQ∗nkkω′k‖2≥0. |
Therefore, NQ:=(NQ1,⋯,NQm) is n-hyponormal tuple. From it, the desired results are produced.
2) Suppose any unitary operator V∈B(K) such that,
[(VQlV∗)∗nl,(VQkV∗)nk]=[VQ∗nllV∗,VQnkkV∗]=V[Q∗nll,Qnkk]V∗. |
Hence, for each collection ω1,⋯,ωm∈K, we have
∑1≤k,l≤m⟨[(VQlV∗)∗nl,(VQkV∗)nk]ωl∣ωk⟩=∑1≤k,l≤m⟨V[Q∗nll,Qnkk]V∗ωl∣ωk⟩=∑1≤i,j≤m⟨[Q∗nll,Qnkk]V∗ωl∣V∗ωk⟩≥0. |
Which is ends of the proof
The following theorem generalizes the statement (1) of Proposition 2.2.
Theorem 2.2. Let Q=(Q1,⋯,Qm)∈B(K)m and W=(W1,⋯,Wm)∈B(K)m for which the following conditions are satisfied
{WkQl=QlWkfor allk,l∈{1,⋯,m},W∗kQl=QlW∗kfor allk,l∈{1,⋯,m},W∗kWl=W∗lWkfor allk,l∈{1,⋯,m}. | (2.3) |
If Q is an (n1,⋯,nm)-hyponormal tuple, then WQ:=(W1Q1,⋯,WmQm) is too.
Proof. Let ω1,⋯,ωm∈K, and taking into account (2.3), we may write
⟨[(WlQl)∗nl,(WkQk)nk]ωl∣ωk⟩=⟨((WkQl)∗nl(WkQk)nk−(WkQk)nk(WlQl)∗nl)ωl∣ωk⟩=⟨(Q∗nllW∗nllWnkkQnkk−WnkkQnkkQ∗nllW∗nLL)ωl∣ωk⟩=⟨Wnkk[Q∗nll,Qnkk]W∗nllωl∣ωk⟩. |
We have
∑1≤k,l≤m⟨[(WlQl)∗nl,(WkQk)nk]ωl∣ωk⟩=∑1≤k,l≤m⟨Wnkk[Q∗nll,Qnkk]W∗nllωl∣ωk⟩=∑1≤k,l≤m⟨Wnll[Q∗nll,Qnkk]W∗nllωl∣ωk⟩=∑1≤k,l≤m⟨[Q∗nll,Qnkk]W∗nllωl|W∗nkkωk⟩=∑1≤k,l≤m⟨[Q∗nll,Qnkk]W∗nllωl|W∗nkkωk⟩=∑1≤k,l≤m⟨[Q∗nll,Qnkk]ψl|ψk⟩, |
where ψk=W∗nkkωi for i=1,⋯,m and ω1,⋯,ωm∈K.
In view of the fact that Q is an (n1,⋯,nm)-hyponorml tuple, we can obtain
∑1≤k,l≤m⟨[(WlQl)∗nl,(WkQk)nk]ωl∣ωk⟩≥0. |
This completes the proof.
Theorem 2.3. Let N∈B(K) be an invertible operator and Q=(Q1⋯,Qm)∈B(H)m be a tuple of operators such that each Qk commutes with N∗N for k=1,⋯,m. Then, Q=(Q1⋯,Qm) is an (n1,⋯,nm)-hyponormal tuple if and only if
NQN−1:=(NQ1N−1,⋯,NQmN−1) is an (n1,⋯,nm)-hyponormal tuple.
Proof. Assume that Q=(Q1,⋯,Qm) is an (n1,⋯,nm)-hyponormal tuple. We need to show that NQN−1:=(NQ1N−1,⋯,NQmN−1) is an (n1,⋯,nm)-hyponormal tuple. In fact, let ω1,⋯,ωm∈H, we have
∑1≤k,l≤m⟨[(NQkN−1)∗nk,(NQlN−1)nl]ωk∣ωl⟩=∑1≤k,l≤m⟨[NQ∗nkkN−1,NQnllN−1]ωk∣ωl⟩=∑1≤k,l≤m⟨N[Q∗nkk,Qnll]N−1ωk∣ωl⟩=∑1≤k,l≤m⟨N[Q∗nkk,Qnll]N−1ωk∣NN−1ωl⟩=∑1≤k,l≤m⟨N∗N[Q∗nkk,Qnll]N−1ωk∣N−1ωl⟩=∑1≤k,l≤m⟨[Q∗nkk,Qnll]√N∗NN−1ωk∣√N∗NN−1ωl⟩=∑1≤k,l≤m⟨[Q∗nkk,Qnll]ψk∣ψl⟩(ψj=√N∗NN−1ωj)≥0. |
Conversely, assume that NQN−1:=(NQ1N−1,⋯,NQmN−1) is an (n1,⋯,nm)-hyponormal tuple. Set Qk=NQkN−1 for k=1,⋯,m. We can check that each Qk commutes with (N−1)∗N−1, and moreover
(N−1Q1(N−1)−1,⋯,N−1Qm(N−1)−1)=(N−1Q1N,⋯,N−1QmN)=(Q1,⋯,Qm). |
Based on the first statement, we have (N−1Q1N,⋯,N−1QmN) is an (n1,⋯,nm)-hyponormal tuple, and so it shall be (Q1,⋯,Qm) is an (n1,⋯,nm)-hyponormal tuple.
Definition 2.2. ([5]) An operator Q=(Q1,⋯,Qm)∈B(H)m is said to be (n1,⋯,nm)-normal tuple if
{[Qnll,Qnkk]=0,∀k,l∈{1,⋯,m},[Q∗nkk,Qnkk]=0,∀k∈{1,⋯,m}. |
Theorem 2.4. Let Q=(Q1,⋯,Qm)∈B(K)m and n=(n1,⋯,nm)∈Nm. The following statements hold:
1) If Q is an (n1,⋯,nm)-hyponormal tuple, then Q∗ is an (n1,⋯,nm)-hyponormal tuple if and only if
⟨[Q∗nll,Qnkk]ω∣ω⟩=iIm⟨[Q∗nll,Qnkk]ω∣ω⟩=0,∀ω∈K,k,l=1,⋯,m. |
2) Assume that Q=(Q1,⋯,Qm) be commuting tuple of operators. If Q and Q∗ are (n1,⋯,nm)-hyponormal tuple, then Q is an (n1,⋯,nm)-normal tuple.
Proof. 1) Let k,l∈{1,2,⋯,m}, we observe that
[(Q∗nll)∗,Q∗nkk]=[Qnll,Q∗nkk]=QnllQ∗nkk−Q∗nkkQnll=−[Q∗nkk,Qnll]. |
Assume that Q and Q∗ are (n1,⋯,nm)-hyponormal tuples. It follows that for each finite collections ω1,⋯,ωm∈K, we have
{∑1≤k,l≤m⟨[Q∗nll,Qnkk]ωl∣ωk⟩≥0,∑1≤k,l≤m⟨[(Q∗nll)∗,Q∗nkk]ωl∣ωk⟩≥0. |
Or equivalently,
{∑1≤k,l≤m⟨[Q∗nll,Qnkk]ωl∣ωk⟩≥0,∑1≤k,l≤m⟨[Q∗nkk,Qnll]ωl∣ωk⟩≤0. |
For fixed couple (k0,l0), let ω1,⋯,ωm∈K be chosen so that ωp=0 for p∉{k0,l0}. Applying the first inequality and the second inequality above to the tuple (ω1,⋯,ωm), we obtain respectively,
⟨[Q∗nk0k0,Unk0k0]ωk0∣ωk0⟩+⟨[Q∗nl0l0,Qnl0l0]ωl0∣ωl0⟩+⟨[Q∗nl0l0,Qnk0k0]ωl0∣ωk0⟩+⟨[Q∗nk0k0,Qnl0l0]ωl0∣ωk0⟩≥0, |
and
⟨[Q∗nk0k0,Qnk0k0]ωk0∣ωk0⟩+⟨[Q∗nl0l0,Qnl0l0]ωl0∣ωl0⟩+⟨[Q∗nl0l0,Qnk0K0]ωl0∣ωk0⟩+⟨[Q∗nk0k0,Qnl0l0]ωl0∣ωk0⟩≤0. |
Thus, we have
⟨[Q∗nk0k0,Qnk0k0]ωk0∣ωk0⟩+⟨[Q∗nl0l0,Qnl0l0]ωl0∣ωl0⟩+⟨[Q∗nl0l0,Qnk0k0]ωl0∣ωk0⟩+⟨[Q∗nk0k0,Qnl0l0]ωl0∣ωk0⟩=0 |
for each ω∈K,k,l=1,⋯,m.
Letting ωk0=ωl0=ω∈K, we obtain
⟨[Q∗nk0k0,Qnk0k0]ω|ω⟩+⟨[Q∗nl0l0,Qnl0l0]ω∣ω⟩+⟨[Q∗nl0l0,Qnk0k0]ω∣ω⟩+⟨[Q∗nk0k0,Qnl0l0]ω∣ω⟩=0 | (2.4) |
for eachω∈K,k,l=1,⋯,m. Letting ωk0=ω and ωl0=−ω∈K, we obtain
⟨[Q∗nk0k0,Qnk0k0]ω∣ω⟩+⟨[Q∗nl0l0,Qnl0l0]ω∣ω⟩−⟨[Q∗nl0l0,Qnk0k0]ω∣ω⟩−⟨[Q∗nk0k0,Qnl0l0]ω∣ω⟩=0, | (2.5) |
for each ω∈K,k,l=1,⋯,m.
By combining (2.4) and (2.5), we obtain:
⟨[Q∗nk0k0,Qnk0k0]ω∣ω⟩+⟨[Q∗nl0l0,Qnl0l0]ω∣ω⟩=0,for eachω∈Kandk,l=1,⋯,m. |
Hence,
⟨[Q∗nl0l0,Qnk0k0]ω∣ω⟩+⟨[Q∗nk0k0,Qnl0l0]ω∣ω⟩=0,for eachω∈Kandk,l=1,⋯,m. |
Observing that
⟨[Q∗nk0k0,Qnl0l0]ω∣ω⟩=⟨ω|[Q∗nl0l0,Qnk0k0]ω⟩=¯⟨[Q∗nl0l0,Qnk0k0]ω∣ω⟩, |
this implying that
Re⟨[Q∗nll,Qnkk]ω|ω⟩=0,∀ω∈K,k,l=1,⋯,m. |
Therefore, [Q∗nll,Qnkk] is purely imaginary.
Assume that [Q∗nll,Qnkk] is purely imaginary for all k,l=1.⋯,m. Thus,
Re⟨[Q∗nll,Qnkk]ω∣ω⟩=0,∀ω∈K,k,l=1,⋯,m. |
This means that
⟨[Q∗nll,Qnkk]ω|ω⟩+⟨[Q∗nkk,Qnll]ω∣ω⟩=0fork,l=1,⋯,m. |
Let ω1,⋯,ωm∈K, and taking into account that
∑1≤k,l≤m⟨[Q∗nll,Qnkk]ωl∣ωk⟩=−∑1≤k,l≤m⟨[Q∗nkk,Qnll]ωl∣ωk⟩. |
However,
∑1≤k,l≤m⟨[(Q∗nll)∗,Q∗nkk]ωl∣ωk⟩=−∑1≤k,l≤m⟨[Q∗nkk,Qnll]ωl∣ωk⟩. |
The above simplification shows:
∑1≤k,l≤m⟨[(Q∗nll)∗,Q∗nll]ωl∣ωk⟩=∑1≤k,l≤m⟨[Q∗nll,Qnkk]ωl∣ωk⟩≥0. |
Which prove that Q∗ is an (n1,⋯,nm)-hyponormal tuple.
2) Obviously that
[Ql,Qk]=0⟹[Qnll,Qnkk]=0∀k,l∈{1,⋯,m}. |
Given that both Q and Q∗ are (n1,⋯,nm)-hyponormal, it follows that
∑1≤k,l≤m⟨[Q∗nkk,Qnll]ωk∣ωl⟩=0. |
In particular,
⟨[Q∗nkk,Qnkk]ωk∣ωk⟩=0fork=1.⋯,m. |
Lemma 2.2. ([5]) Let T,S∈B(K) and p,q∈N. Then,
[Tp,Sq]=∑α+α′=p−1β+β′=q−1TαSβ[T,S]Sβ′Tα′. |
Proposition 2.3. Let Q=(Q1,⋯,Qm)∈B(K)m and n=(n1,⋯,nm)∈Nm. Q=(Q1,⋯,Qm) is an (n1,⋯,nm)-hyponormal tuple, then Qr=(Qr11,⋯,Qrmm) is too.
Proof. If qr∈{0,1} for all k∈{1,⋯,m}, then [(Qnkk)rk,(Qnll)rl]=0 for all k,l=1,⋯,m.
Assume that rk>1 for all k∈{1,⋯,m}, and taking into account Lemma 2.2
[(Q∗nll)rl,(Qnkk)rk]=∑α+α′=rl−1β+β′=rk−1(Q∗nll)α(Qnkk)β[Q∗nll,(Qnkk)](Qnkk)α′(Q∗nll)β′. |
We infer that
∑1≤k,l≤m⟨[(Q∗nll)rl,(Qnkk)rk]ωl∣ωk⟩=∑1≤k,l≤m⟨(∑α+α′=ql−1β+β′=qi−1(Q∗nll)α(Qnkk)β[Q∗nll,Qnll](Qnkk)α′(Q∗nll)β′)ωl∣ωk⟩=∑1≤k,l≤m∑α+α′=rl−1β+β′=rk−1(⟨([(Q∗nll),(Qnll)](Qnkk)α′(Q∗nll)β′)ωl∣(Qnkk)β(Qnll)αωk⟩). |
Using the (n1,⋯,nm)-hyponormality of Q, we obtain for all (ωk)1≤k≤m∈Km
∑1≤k,l≤m⟨[Q∗nll,Qnkk]ωl∣ωk⟩≥0, |
which implies that
∑1≤k,l≤m⟨[(Q∗nll)rl),(Qnkk)rk]ωl∣ωk⟩≥0 |
for all (ωk)1≤k≤m∈Km. Therefore, Qr is an (n1,⋯,nm)-hyponormal tuple.
This paper introduces and explores the concept of (n1,⋯,nm)-hyponormal tuples, a new class of multivariable operators that integrates the notions of joint normal and joint hyponormal operators. The study demonstrates that (n1,⋯,nm)-hyponormal tuples inherit several important properties from joint hyponormal operators. This new class of operators not only enriches the theory of multivariable operators but also provides a framework for further exploration and analysis of operator tuples.
Sid Ahmed Ould Beinane and Sid Ahmed Ould Ahmed Mahmoud: conceptualization, validation, formal analysis, supervision, writing-review and editing. All authors contributed equally to the writing of this article. All authors have read and approved the final version of the manuscript for publication.
This work was funded by the Deanship of Scientific Research at Jouf University under grant (No. DSR-2021-03-03123). The authors would like to express their sincere gratitude to the anonymous reviewers for their thoughtful reading and valuable comments on this work.
The authors affirm that they have no conflicts of interest to disclose.
[1] |
A. A. Al-Dohiman, S. A. Ould Ahmed Mahmoud, Class of operators related to (m,C)-isometric tuple of commuting operators, J. Inequal. Appl., 2022 (2022), 105. http://doi.org/10.1186/s13660-022-02835-8 doi: 10.1186/s13660-022-02835-8
![]() |
[2] |
N. Ahmad, E. S. Kamel, S. A. Ould Ahmed Mahmoud, (n1,⋯,nd)-quasi-(p,q)-isometric commuting tuple of operators, Filomat, 37 (2023), 9531–9542. https://doi.org/10.2298/FIL2328531A doi: 10.2298/FIL2328531A
![]() |
[3] |
H. O. Alshamari, Higher order (n,m)-Drazin normal operators, J. Inequal. Appl., 2024 (2024), 18. https://doi.org/10.1186/s13660-024-03095-4 doi: 10.1186/s13660-024-03095-4
![]() |
[4] |
A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc., 103 (1988), 417–423. https://doi.org/10.2307/2047154 doi: 10.2307/2047154
![]() |
[5] |
[0.1080/03081087.2019.1593925] H. Baklouti, K. Feki, S. A. Ould Ahmed Mahmoud, Joint normality of operators in semi-Hilbertian spaces, Linear Multilinear A., 68 (2019), 845–866. https://doi.org/10.1080/03081087.2019.1593925 doi: 10.1080/03081087.2019.1593925
![]() |
[6] |
H. Baklouti K. Feki, S. A. Ould Ahmed Mahmoud, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl., 555 (2018), 266–284. https://doi.org/10.1016/j.laa.2018.06.021 doi: 10.1016/j.laa.2018.06.021
![]() |
[7] | N. L. Braha, M. Lohaj, F. H. Marevci, S. Lohaj, Some properties of paranormal and hyponormal operators, Bull. Math. Anal. Appl., 1 (2009), 23–35. |
[8] | M. Chō, H. Motoyoshi, B. Nastovska, On the joint spectra of commuting tuples of operators and a conjugation, Functional Analysis, Approximation and Computation, 9 (2017), 21–26. |
[9] |
M. Chō, S. A. Ould Ahmed Mahmoud, (A,m)-Symmetric commuting tuple of operators on a Hilbert space, J. Inequal. Appl., 22 (2019), 931–947. https://doi.org/10.7153/mia-2019-22-63 doi: 10.7153/mia-2019-22-63
![]() |
[10] | J. B. Conway, A course in functional analysis, 2 Eds., New York: Springer, 2007. https://doi.org/10.1007/978-1-4757-4383-8 |
[11] | B. Fuglede, A commutativity theorem for normal operators, P. Mat. Acad. Sci. USA, 36 (1950), 35–40. |
[12] |
J. Gleason, S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integr. Equ. Oper. Theory, 56 (2006), 181–196. https://doi.org/10.1007/s00020-006-1424-6 doi: 10.1007/s00020-006-1424-6
![]() |
[13] |
Y. M. Han, J. H. Son, On quasi-M-hyponormal operatros, Filomat, 25 (2011), 37–52. https://doi.org/10.2298/FIL1101037H doi: 10.2298/FIL1101037H
![]() |
[14] |
E. Ko, Properties of a kth root of a hyponormal operator, B. Korean Math. Soc., 40 (2003), 685–692. https://doi.org/10.4134/BKMS.2003.40.4.685 doi: 10.4134/BKMS.2003.40.4.685
![]() |
[15] |
E. Ko, Kth roots of p-hyponormal operators are subscalar operators of order 4k, Integr. Equ. Oper. Theory, 59 (2007), 173–187. https://doi.org/10.1007/s00020-007-1519-8 doi: 10.1007/s00020-007-1519-8
![]() |
[16] |
S. A. Ould Ahmed Mahmoud, M. Chō, J. E. Lee, On (m,C)-isometric commuting tuples of operators on a Hilbert space, Results Math., 73 (2018), 51. https://doi.org/10.1007/s00025-018-0810-0 doi: 10.1007/s00025-018-0810-0
![]() |
[17] |
S. A. Ould Ahmed Mahmoud, H. O. Alshammari, Joint m-quasihyponormal on a Hilbert space, Ann. Funct. Anal., 12 (2021), 42. https://doi.org/10.1007/s43034-021-00130-z doi: 10.1007/s43034-021-00130-z
![]() |
[18] | S. Mecheri, On the normality of operators, Revista Colombiana de Matemáticas, 39 (2005), 87–95. |
[19] |
M. Guesba, E. M. Ould Beiba, S. A. Ould Ahmed Mahmoud, Joint A-hyponormality of operators in semi-Hilbert spaces, Linear Multilinear A., 69 (2021), 2888–2907. https://doi.org/10.1080/03081087.2019.1698509 doi: 10.1080/03081087.2019.1698509
![]() |
[20] |
C. R. Putnam, On normal operators in Hilbert space, Am. J. Math., 73 (1951), 357–362. https://doi.org/10.2307/2372180 doi: 10.2307/2372180
![]() |
[21] |
S. G. Shi, Z. W. Fu, S. Z. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 307 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239
![]() |
[22] | J. G. Stamofli, Hyponormal operatros, Pac. J. Math., 12 (1962), 1453–1458. |
[23] |
L. Zhang, S. G. Shi, A characterization of central BMO space via the commutator of fractional Hardy operator, J. Funct. Space., 2020 (2020), 3543165. https://doi.org/10.1155/2020/3543165 doi: 10.1155/2020/3543165
![]() |
[24] |
F. Zuo, H. L. Zuo, Spectral properties and characterization of quasi-n-hyponormal operators, J. Math. Inequal., 16 (2022), 965–974. https://doi.org/10.7153/jmi-2022-16-65 doi: 10.7153/jmi-2022-16-65
![]() |