Research article

On (n1,,nm)-hyponormal tuples of Hilbert space operators

  • Received: 18 August 2024 Revised: 13 September 2024 Accepted: 18 September 2024 Published: 26 September 2024
  • MSC : 47A13

  • This paper introduces a new class of multivariable operators called (n1,,nm)-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators Q=(Q1,,Qm) is said to be an (n1,,nm)-hyponormal tuple for some (n1,,nm)Nm if

    1k,lm[Qnkk,Qnll]ωkωl0,(ωk)1kmKm.

    We show several properties of this class that correspond to the properties of joint hyponormal operators.

    Citation: Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud. On (n1,,nm)-hyponormal tuples of Hilbert space operators[J]. AIMS Mathematics, 2024, 9(10): 27784-27796. doi: 10.3934/math.20241349

    Related Papers:

    [1] Salma Aljawi, Kais Feki, Hranislav Stanković . Jointly A-hyponormal m-tuple of commuting operators and related results. AIMS Mathematics, 2024, 9(11): 30348-30363. doi: 10.3934/math.20241464
    [2] Hadi Obaid Alshammari . Higher order hyperexpansivity and higher order hypercontractivity. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393
    [3] Houcine Sadraoui, Borhen Halouani . Commuting Toeplitz operators on weighted harmonic Bergman spaces and hyponormality on the Bergman space of the punctured unit disk. AIMS Mathematics, 2024, 9(8): 20043-20057. doi: 10.3934/math.2024977
    [4] Ohud Bulayhan Almutairi, Sid Ahmed Ould Ahmed Mahmoud . New extension of quasi-M-hypnormal operators. AIMS Mathematics, 2024, 9(8): 21383-21396. doi: 10.3934/math.20241038
    [5] Zhi-jie Jiang . Self-adjoint and hyponormal weighted composition operators on the Fock space. AIMS Mathematics, 2024, 9(9): 24989-24997. doi: 10.3934/math.20241218
    [6] Gang Wang . Some properties of weaving K-frames in n-Hilbert space. AIMS Mathematics, 2024, 9(9): 25438-25456. doi: 10.3934/math.20241242
    [7] Khalil Hadi Hakami, Junaid Nisar, Kholood Alnefaie, Moin A. Ansari . Characterizing N-type derivations on standard operator algebras by local actions. AIMS Mathematics, 2024, 9(9): 25319-25332. doi: 10.3934/math.20241236
    [8] Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on p-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121
    [9] Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599
    [10] Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . n-quasi-A-(m,q)-isometry on a Banach space. AIMS Mathematics, 2023, 8(12): 28308-28321. doi: 10.3934/math.20231448
  • This paper introduces a new class of multivariable operators called (n1,,nm)-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators Q=(Q1,,Qm) is said to be an (n1,,nm)-hyponormal tuple for some (n1,,nm)Nm if

    1k,lm[Qnkk,Qnll]ωkωl0,(ωk)1kmKm.

    We show several properties of this class that correspond to the properties of joint hyponormal operators.



    Throughout this work, we will denote by B(K) the algebra of bounded linear operators acting on a complex Hilbert space K. For QB(K), we denote by ker(Q) and Q for the null space and the operator adjoint of Q, respectively. An operator QB(K) is said to be normal if QQ=QQ [10,18,20], hyponormal if [Q,Q]:=QQQQ0(QωQωωK) [7,22]). Note that

    [Q,Q]0[Q,Q]ωω0ωK.

    The authors in [14] have introduced the concept of n-hyponormality for some positive integer n as follows: an operator Q is said to be n-hyponormal if [Qn,Qn]0, or equivalently (QnωQnωωK). Note that

    [Qn,Qn]0[Qn,Qn]ωω0ωK.

    We invite the reader to reading [14,15,24] for more details on this topic.

    In recent years, the study of some concepts of operators theory in several variables has been studied at several levels by many authors, based on studies carried out on the theory of operators in one variable (see [1,2,3,8,9]). We mention here the following concepts related to our study, namely, joint normality, joint hyponormality and joint quasihyponormality. A tuple Q=(Q1,,Qm)B(K)m, is said to be joint normal [4,5,6] if Q satisfies the following conditions:

    {QlQk=QkQl(l,k){1,,m}2,[Qk,Qk]=0k{1,,m}.

    However, Q=(Q1,,Qm) is said to be a joint hyponormal ([4]) if

    1l,km[Qk,Ql]ωk|ωl0,(ωk)1kmKm.

    Note that Q:=(Q1,,Qm).

    Recently, Sid Ahmed et al.[17] have introduced the concept of joint m-quasihyponormal as follows: An tuple Q=(Q1,,Qm)B(K)m is said to be a joint m-quasihyponormal if Q satisfies

    1l,kmQk[Qk,Ql]Qlωk|ωl0,(ωk)1kmKm.

    In this work, we present natural generalizations of joint hyponormalty to (n1,,nm)-hyponrmality and joint quasihyponormality to (q1,,qm)-quasi-(n1,,nm)-hyponrmality. Q=(Q1,,Qm) is said to be an (n1,,nm)-hyponormal if

    1l,km[Qnkk,Qnll]ωk|ωl0,(ωk)1kmKm,

    for some (n1,,nm)Nm, and it is said to be (q1,,qm) quasi-(n1,,nm)-hyponrmal if

    1l,kmQqkk[Qnkk,Qnll]Qqllωk|ωl0,(ωk)1kmKm

    for some (n1,,nm)Nm and (q1,,qm)Nm.

    Additional references regarding tuples of operators are cited here [12,16,19,21,23].

    In this section, the definition and properties corresponding to the (n1,,nm)-hyponormal tuples of operators are introduced.

    Definition 2.1. Let Q=(Q1,,Qm)B(K)m. We say that Q is an n=(n1,,nm)-hyponormal tuple if the operator matrix ([Qnkk,Qnll])1k,lm=(QnkkQnllQnllQnkk)1k,lm is positive on 1kmK that is

    1k,lm[Qnkk,Qnll]ωk|ωl0,for(ωk)1kmKm. (2.1)

    It is clear from this definition that Q is an n-hyponormal tuple if

    [Qn,Qn]=([Qn11,Qn11][Qn22,Qn11]...[Qnmm,Qn11][Qn11,Qn22][Qn22,Qn22]...[Qnmm,Qn22]............[Qn11,Qnmm][Qn22,Qnmm]...[Qnmm,Qnmm])

    is positive operator on 1imK:=KK.

    Remark 2.1. The following observations can be derived from Definition 2.1.

    (ⅰ) When m=1, then Q is an n-hyponormal if and only if [Qn,Qn]0. Note that

    [Qn,Qn]0[Qn,Qn]ωω0QnωQnωωK.

    (ⅱ) If m=2, then Q=(Q1,Q2) is n=(n1,n2)-hyponormal pair if and only if

    [Qn,Qn]=([Qn11,Qn11][Qn11,Qn22][Qn22,Qn11][Qn22,Qn22])0,

    which can be expressed as:

    [Qn11,(Qn11]ω1ω1+[Qn11,(Qn22]ω1ω2+[Qn22,Qn11]ω2ω1+[Qn22,Qn22]ω2ω20

    for all (ω1,ω2)K2.

    Example 2.1. Let Q=(Q1,,Qm) such that each Qk be nk-hyponomal for k=1,,m. If [Ql,Qk]=0 for kl. Then, Q=(Q1,,Qm) is an n=(n1,,nm)-hyponormal tuple.

    Taking into consideration [Ql,Qk]=0 for kl and Qk is an nk-hyponprmal, we may rewrite

    1k,lm[Qnkk,Qnll]ωk|ωl=1km[Qnkk,Qnkk]ωk|ωk0,for(ωk)1kmKm.

    The following theorem introduces a characterization for the studied class of multivariable operators.

    Theorem 2.1. A tuple Q=(Q1,,Qm)B(K)m is an (n1,,nm)-hyponormal tuple if and only if

    1k,lmQnkkωl|Qnllωk1kmQnkkωk20 (2.2)

    for every ω1,,ωmK.

    Proof. We observe that

    1k,lm[Qnll,Qnkk]ωl|ωk0,ω1,,ωmK.

    And so it is

    1k,lm(QnllQnkkQnkkQnll)ωlωk01k,lmQnllQnkkωl|ωk1k,lmQnkkQnllωl|ωl01k,lmQnkkωlQnllωk1k,lmQnllωlQnkkωk01k,lmQnkkωlQnllωk1lmQnllωl1kmQnkkωk01k,lmQnkkωlQnllωk1lmQnllωl20.

    Thus, the desired equivalence is obtained.

    Remark 2.2. When you choose n=(1,,1), Theorem 2.1 coincides with [4, Remark 1].

    Corollary 2.1. Let Q=(Q1,,Qm)B(K)m be an (n1,,nm)-hyponormal tuple of operators. Then,

    1kmker(Qnkk)ker(1kmQnkk).

    Proof. Let ω1kmker(Qnkk) and taking into account Theorem 2.1, we obtain

    1k,lmQnkkωQnllω=01kmQnkkω20.

    Hence,

    1kmQnkkω=0.

    Consequently,

    1kmQnkkω=0,and soωker(1kmQnkk).

    Remark 2.3. When m=1, it is well known that if Q is an n-hyponormal single operator, then

    ker(Qn)ker(Qn).

    Proposition 2.1. Let QB(K) and consider ˜Q=(Q,,Q). Then, ˜Q is an (n,,n)-hyponormal tuple if and only if Q is an n-hyponormal.

    Proof. We have

    Qisn-hyopnromalQnωQnω0,ωKQn(ω1++ωm)2Qn(ω1++ωm)20 for each collectionω1,,ωmk,Q(1lmωl)Q(1kmωk)1kmQnωk201k,lmQnωlQnωk1kmQnωk20˜Qis(n,,n)hyponormal tuple(by Theorem2.1).

    Lemma 2.1. Let Q=(Q1,,Qm)B(K)m, and let μ:=(μ1,,μm)Cm. If Q is an (n1,,nm)-hyponormal tuple. Then, μQ:=(μ1Q1,,μmQm) is an (n1,,nm)-hyponormal tuple.

    Proof. Using some calculations and taking into account that U is an (n1,,nm)-hyponormal tuple, we have

    1k,lm(μkQk)nkωlμlQl)nlωk1lm(μlQl)nlωl2=1k,lm¯μnllQnkkωl¯μknkQnllωk1lmQnll¯μlnlωl2=1k,lmQnkk(¯μnllωl)|Qnll(¯μnkkωk)1lmQnll¯μlnlωl2=1k,lmQnkkψlQnllψk1lmQnllψl20.

    Remark 2.4. The property of being (n1,,nm)-hyponormal for a tuple Q=(Q1,,Qm) of operators is indeed invariant under permutations of the operators in Q.

    The following proposition describes some properties of n-hyponormal m -tuples of operators.

    Proposition 2.2. Let Q=(Q1,,Qm)B(K)m be an (n1,,nm)-hyponormal tuple. The following properties hold:

    1) If NB(H) is a normal operator such that N commutes with each Qk, then, NQ:=(NQK,,NQm) is (n1,,nm)-hyponormal tuple.

    2) For any unitary operator WB(K), the tuples WQW:=(WQ1W,,WQmW) is (n1,,nm)-hyponormal tuple.

    Proof. 1) Given that N is a normal operator for which NQk=QkN for k=1,,m, and referring to Fuglede-Putnam theorem [11], we obtain NQk=QkN. Based on these statements, we can obtain the relationships

    1k,lm(NQk)nkωl|(NQl)nlωk1km(NQk)nkωk2=1k,lmNnlQnkkωlNnkQnllωk1kmNnkQnkkωk2=1k,lmQnkk(Nnlωl)Qnll(Nnlωk)1kmQnkkNnkωk2=1k,lmQnkkωlQnllωk1kmQnkkωk20.

    Therefore, NQ:=(NQ1,,NQm) is n-hyponormal tuple. From it, the desired results are produced.

    2) Suppose any unitary operator VB(K) such that,

    [(VQlV)nl,(VQkV)nk]=[VQnllV,VQnkkV]=V[Qnll,Qnkk]V.

    Hence, for each collection ω1,,ωmK, we have

    1k,lm[(VQlV)nl,(VQkV)nk]ωlωk=1k,lmV[Qnll,Qnkk]Vωlωk=1i,jm[Qnll,Qnkk]VωlVωk0.

    Which is ends of the proof

    The following theorem generalizes the statement (1) of Proposition 2.2.

    Theorem 2.2. Let Q=(Q1,,Qm)B(K)m and W=(W1,,Wm)B(K)m for which the following conditions are satisfied

    {WkQl=QlWkfor allk,l{1,,m},WkQl=QlWkfor allk,l{1,,m},WkWl=WlWkfor allk,l{1,,m}. (2.3)

    If Q is an (n1,,nm)-hyponormal tuple, then WQ:=(W1Q1,,WmQm) is too.

    Proof. Let ω1,,ωmK, and taking into account (2.3), we may write

    [(WlQl)nl,(WkQk)nk]ωlωk=((WkQl)nl(WkQk)nk(WkQk)nk(WlQl)nl)ωlωk=(QnllWnllWnkkQnkkWnkkQnkkQnllWnLL)ωlωk=Wnkk[Qnll,Qnkk]Wnllωlωk.

    We have

    1k,lm[(WlQl)nl,(WkQk)nk]ωlωk=1k,lmWnkk[Qnll,Qnkk]Wnllωlωk=1k,lmWnll[Qnll,Qnkk]Wnllωlωk=1k,lm[Qnll,Qnkk]Wnllωl|Wnkkωk=1k,lm[Qnll,Qnkk]Wnllωl|Wnkkωk=1k,lm[Qnll,Qnkk]ψl|ψk,

    where ψk=Wnkkωi for i=1,,m and ω1,,ωmK.

    In view of the fact that Q is an (n1,,nm)-hyponorml tuple, we can obtain

    1k,lm[(WlQl)nl,(WkQk)nk]ωlωk0.

    This completes the proof.

    Theorem 2.3. Let NB(K) be an invertible operator and Q=(Q1,Qm)B(H)m be a tuple of operators such that each Qk commutes with NN for k=1,,m. Then, Q=(Q1,Qm) is an (n1,,nm)-hyponormal tuple if and only if

    NQN1:=(NQ1N1,,NQmN1) is an (n1,,nm)-hyponormal tuple.

    Proof. Assume that Q=(Q1,,Qm) is an (n1,,nm)-hyponormal tuple. We need to show that NQN1:=(NQ1N1,,NQmN1) is an (n1,,nm)-hyponormal tuple. In fact, let ω1,,ωmH, we have

    1k,lm[(NQkN1)nk,(NQlN1)nl]ωkωl=1k,lm[NQnkkN1,NQnllN1]ωkωl=1k,lmN[Qnkk,Qnll]N1ωkωl=1k,lmN[Qnkk,Qnll]N1ωkNN1ωl=1k,lmNN[Qnkk,Qnll]N1ωkN1ωl=1k,lm[Qnkk,Qnll]NNN1ωkNNN1ωl=1k,lm[Qnkk,Qnll]ψkψl(ψj=NNN1ωj)0.

    Conversely, assume that NQN1:=(NQ1N1,,NQmN1) is an (n1,,nm)-hyponormal tuple. Set Qk=NQkN1 for k=1,,m. We can check that each Qk commutes with (N1)N1, and moreover

    (N1Q1(N1)1,,N1Qm(N1)1)=(N1Q1N,,N1QmN)=(Q1,,Qm).

    Based on the first statement, we have (N1Q1N,,N1QmN) is an (n1,,nm)-hyponormal tuple, and so it shall be (Q1,,Qm) is an (n1,,nm)-hyponormal tuple.

    Definition 2.2. ([5]) An operator Q=(Q1,,Qm)B(H)m is said to be (n1,,nm)-normal tuple if

    {[Qnll,Qnkk]=0,k,l{1,,m},[Qnkk,Qnkk]=0,k{1,,m}.

    Theorem 2.4. Let Q=(Q1,,Qm)B(K)m and n=(n1,,nm)Nm. The following statements hold:

    1) If Q is an (n1,,nm)-hyponormal tuple, then Q is an (n1,,nm)-hyponormal tuple if and only if

    [Qnll,Qnkk]ωω=iIm[Qnll,Qnkk]ωω=0,ωK,k,l=1,,m.

    2) Assume that Q=(Q1,,Qm) be commuting tuple of operators. If Q and Q are (n1,,nm)-hyponormal tuple, then Q is an (n1,,nm)-normal tuple.

    Proof. 1) Let k,l{1,2,,m}, we observe that

    [(Qnll),Qnkk]=[Qnll,Qnkk]=QnllQnkkQnkkQnll=[Qnkk,Qnll].

    Assume that Q and Q are (n1,,nm)-hyponormal tuples. It follows that for each finite collections ω1,,ωmK, we have

    {1k,lm[Qnll,Qnkk]ωlωk0,1k,lm[(Qnll),Qnkk]ωlωk0.

    Or equivalently,

    {1k,lm[Qnll,Qnkk]ωlωk0,1k,lm[Qnkk,Qnll]ωlωk0.

    For fixed couple (k0,l0), let ω1,,ωmK be chosen so that ωp=0 for p{k0,l0}. Applying the first inequality and the second inequality above to the tuple (ω1,,ωm), we obtain respectively,

    [Qnk0k0,Unk0k0]ωk0ωk0+[Qnl0l0,Qnl0l0]ωl0ωl0+[Qnl0l0,Qnk0k0]ωl0ωk0+[Qnk0k0,Qnl0l0]ωl0ωk00,

    and

    [Qnk0k0,Qnk0k0]ωk0ωk0+[Qnl0l0,Qnl0l0]ωl0ωl0+[Qnl0l0,Qnk0K0]ωl0ωk0+[Qnk0k0,Qnl0l0]ωl0ωk00.

    Thus, we have

    [Qnk0k0,Qnk0k0]ωk0ωk0+[Qnl0l0,Qnl0l0]ωl0ωl0+[Qnl0l0,Qnk0k0]ωl0ωk0+[Qnk0k0,Qnl0l0]ωl0ωk0=0

    for each ωK,k,l=1,,m.

    Letting ωk0=ωl0=ωK, we obtain

    [Qnk0k0,Qnk0k0]ω|ω+[Qnl0l0,Qnl0l0]ωω+[Qnl0l0,Qnk0k0]ωω+[Qnk0k0,Qnl0l0]ωω=0 (2.4)

    for eachωK,k,l=1,,m. Letting ωk0=ω and ωl0=ωK, we obtain

    [Qnk0k0,Qnk0k0]ωω+[Qnl0l0,Qnl0l0]ωω[Qnl0l0,Qnk0k0]ωω[Qnk0k0,Qnl0l0]ωω=0, (2.5)

    for each ωK,k,l=1,,m.

    By combining (2.4) and (2.5), we obtain:

    [Qnk0k0,Qnk0k0]ωω+[Qnl0l0,Qnl0l0]ωω=0,for eachωKandk,l=1,,m.

    Hence,

    [Qnl0l0,Qnk0k0]ωω+[Qnk0k0,Qnl0l0]ωω=0,for eachωKandk,l=1,,m.

    Observing that

    [Qnk0k0,Qnl0l0]ωω=ω|[Qnl0l0,Qnk0k0]ω=¯[Qnl0l0,Qnk0k0]ωω,

    this implying that

    Re[Qnll,Qnkk]ω|ω=0,ωK,k,l=1,,m.

    Therefore, [Qnll,Qnkk] is purely imaginary.

    Assume that [Qnll,Qnkk] is purely imaginary for all k,l=1.,m. Thus,

    Re[Qnll,Qnkk]ωω=0,ωK,k,l=1,,m.

    This means that

    [Qnll,Qnkk]ω|ω+[Qnkk,Qnll]ωω=0fork,l=1,,m.

    Let ω1,,ωmK, and taking into account that

    1k,lm[Qnll,Qnkk]ωlωk=1k,lm[Qnkk,Qnll]ωlωk.

    However,

    1k,lm[(Qnll),Qnkk]ωlωk=1k,lm[Qnkk,Qnll]ωlωk.

    The above simplification shows:

    1k,lm[(Qnll),Qnll]ωlωk=1k,lm[Qnll,Qnkk]ωlωk0.

    Which prove that Q is an (n1,,nm)-hyponormal tuple.

    2) Obviously that

    [Ql,Qk]=0[Qnll,Qnkk]=0k,l{1,,m}.

    Given that both Q and Q are (n1,,nm)-hyponormal, it follows that

    1k,lm[Qnkk,Qnll]ωkωl=0.

    In particular,

    [Qnkk,Qnkk]ωkωk=0fork=1.,m.

    Lemma 2.2. ([5]) Let T,SB(K) and p,qN. Then,

    [Tp,Sq]=α+α=p1β+β=q1TαSβ[T,S]SβTα.

    Proposition 2.3. Let Q=(Q1,,Qm)B(K)m and n=(n1,,nm)Nm. Q=(Q1,,Qm) is an (n1,,nm)-hyponormal tuple, then Qr=(Qr11,,Qrmm) is too.

    Proof. If qr{0,1} for all k{1,,m}, then [(Qnkk)rk,(Qnll)rl]=0 for all k,l=1,,m.

    Assume that rk>1 for all k{1,,m}, and taking into account Lemma 2.2

    [(Qnll)rl,(Qnkk)rk]=α+α=rl1β+β=rk1(Qnll)α(Qnkk)β[Qnll,(Qnkk)](Qnkk)α(Qnll)β.

    We infer that

    1k,lm[(Qnll)rl,(Qnkk)rk]ωlωk=1k,lm(α+α=ql1β+β=qi1(Qnll)α(Qnkk)β[Qnll,Qnll](Qnkk)α(Qnll)β)ωlωk=1k,lmα+α=rl1β+β=rk1(([(Qnll),(Qnll)](Qnkk)α(Qnll)β)ωl(Qnkk)β(Qnll)αωk).

    Using the (n1,,nm)-hyponormality of Q, we obtain for all (ωk)1kmKm

    1k,lm[Qnll,Qnkk]ωlωk0,

    which implies that

    1k,lm[(Qnll)rl),(Qnkk)rk]ωlωk0

    for all (ωk)1kmKm. Therefore, Qr is an (n1,,nm)-hyponormal tuple.

    This paper introduces and explores the concept of (n1,,nm)-hyponormal tuples, a new class of multivariable operators that integrates the notions of joint normal and joint hyponormal operators. The study demonstrates that (n1,,nm)-hyponormal tuples inherit several important properties from joint hyponormal operators. This new class of operators not only enriches the theory of multivariable operators but also provides a framework for further exploration and analysis of operator tuples.

    Sid Ahmed Ould Beinane and Sid Ahmed Ould Ahmed Mahmoud: conceptualization, validation, formal analysis, supervision, writing-review and editing. All authors contributed equally to the writing of this article. All authors have read and approved the final version of the manuscript for publication.

    This work was funded by the Deanship of Scientific Research at Jouf University under grant (No. DSR-2021-03-03123). The authors would like to express their sincere gratitude to the anonymous reviewers for their thoughtful reading and valuable comments on this work.

    The authors affirm that they have no conflicts of interest to disclose.



    [1] A. A. Al-Dohiman, S. A. Ould Ahmed Mahmoud, Class of operators related to (m,C)-isometric tuple of commuting operators, J. Inequal. Appl., 2022 (2022), 105. http://doi.org/10.1186/s13660-022-02835-8 doi: 10.1186/s13660-022-02835-8
    [2] N. Ahmad, E. S. Kamel, S. A. Ould Ahmed Mahmoud, (n1,,nd)-quasi-(p,q)-isometric commuting tuple of operators, Filomat, 37 (2023), 9531–9542. https://doi.org/10.2298/FIL2328531A doi: 10.2298/FIL2328531A
    [3] H. O. Alshamari, Higher order (n,m)-Drazin normal operators, J. Inequal. Appl., 2024 (2024), 18. https://doi.org/10.1186/s13660-024-03095-4 doi: 10.1186/s13660-024-03095-4
    [4] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc., 103 (1988), 417–423. https://doi.org/10.2307/2047154 doi: 10.2307/2047154
    [5] [0.1080/03081087.2019.1593925] H. Baklouti, K. Feki, S. A. Ould Ahmed Mahmoud, Joint normality of operators in semi-Hilbertian spaces, Linear Multilinear A., 68 (2019), 845–866. https://doi.org/10.1080/03081087.2019.1593925 doi: 10.1080/03081087.2019.1593925
    [6] H. Baklouti K. Feki, S. A. Ould Ahmed Mahmoud, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl., 555 (2018), 266–284. https://doi.org/10.1016/j.laa.2018.06.021 doi: 10.1016/j.laa.2018.06.021
    [7] N. L. Braha, M. Lohaj, F. H. Marevci, S. Lohaj, Some properties of paranormal and hyponormal operators, Bull. Math. Anal. Appl., 1 (2009), 23–35.
    [8] M. Chō, H. Motoyoshi, B. Nastovska, On the joint spectra of commuting tuples of operators and a conjugation, Functional Analysis, Approximation and Computation, 9 (2017), 21–26.
    [9] M. Chō, S. A. Ould Ahmed Mahmoud, (A,m)-Symmetric commuting tuple of operators on a Hilbert space, J. Inequal. Appl., 22 (2019), 931–947. https://doi.org/10.7153/mia-2019-22-63 doi: 10.7153/mia-2019-22-63
    [10] J. B. Conway, A course in functional analysis, 2 Eds., New York: Springer, 2007. https://doi.org/10.1007/978-1-4757-4383-8
    [11] B. Fuglede, A commutativity theorem for normal operators, P. Mat. Acad. Sci. USA, 36 (1950), 35–40.
    [12] J. Gleason, S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integr. Equ. Oper. Theory, 56 (2006), 181–196. https://doi.org/10.1007/s00020-006-1424-6 doi: 10.1007/s00020-006-1424-6
    [13] Y. M. Han, J. H. Son, On quasi-M-hyponormal operatros, Filomat, 25 (2011), 37–52. https://doi.org/10.2298/FIL1101037H doi: 10.2298/FIL1101037H
    [14] E. Ko, Properties of a kth root of a hyponormal operator, B. Korean Math. Soc., 40 (2003), 685–692. https://doi.org/10.4134/BKMS.2003.40.4.685 doi: 10.4134/BKMS.2003.40.4.685
    [15] E. Ko, Kth roots of p-hyponormal operators are subscalar operators of order 4k, Integr. Equ. Oper. Theory, 59 (2007), 173–187. https://doi.org/10.1007/s00020-007-1519-8 doi: 10.1007/s00020-007-1519-8
    [16] S. A. Ould Ahmed Mahmoud, M. Chō, J. E. Lee, On (m,C)-isometric commuting tuples of operators on a Hilbert space, Results Math., 73 (2018), 51. https://doi.org/10.1007/s00025-018-0810-0 doi: 10.1007/s00025-018-0810-0
    [17] S. A. Ould Ahmed Mahmoud, H. O. Alshammari, Joint m-quasihyponormal on a Hilbert space, Ann. Funct. Anal., 12 (2021), 42. https://doi.org/10.1007/s43034-021-00130-z doi: 10.1007/s43034-021-00130-z
    [18] S. Mecheri, On the normality of operators, Revista Colombiana de Matemáticas, 39 (2005), 87–95.
    [19] M. Guesba, E. M. Ould Beiba, S. A. Ould Ahmed Mahmoud, Joint A-hyponormality of operators in semi-Hilbert spaces, Linear Multilinear A., 69 (2021), 2888–2907. https://doi.org/10.1080/03081087.2019.1698509 doi: 10.1080/03081087.2019.1698509
    [20] C. R. Putnam, On normal operators in Hilbert space, Am. J. Math., 73 (1951), 357–362. https://doi.org/10.2307/2372180 doi: 10.2307/2372180
    [21] S. G. Shi, Z. W. Fu, S. Z. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 307 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239
    [22] J. G. Stamofli, Hyponormal operatros, Pac. J. Math., 12 (1962), 1453–1458.
    [23] L. Zhang, S. G. Shi, A characterization of central BMO space via the commutator of fractional Hardy operator, J. Funct. Space., 2020 (2020), 3543165. https://doi.org/10.1155/2020/3543165 doi: 10.1155/2020/3543165
    [24] F. Zuo, H. L. Zuo, Spectral properties and characterization of quasi-n-hyponormal operators, J. Math. Inequal., 16 (2022), 965–974. https://doi.org/10.7153/jmi-2022-16-65 doi: 10.7153/jmi-2022-16-65
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(655) PDF downloads(42) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog